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Abstract Disposal of industrial pollutants is one of 
the most important working topics today. Pd–doped 
catalysts have high efficiency in the degradation of 
many organic pollutants. Within the scope of this 
study, waste engine oil (WEO) was used as acti-
vated carbon (AC) source and then AC was encapsu-
lated with chitosan (CS) to prepared chitosan–based 
microbeads (CS/WEO AC) for catalyst support. After 
treatment with glyoxal as cross–linker, Pd nanoparti-
cles with spherical shape and 16.8 nm diameter were 
decorated on the microbeads (Pd@CS/WEO AC). 
Efficiency of Pd@CS/WEO AC on the reduction of 

4-nitrophenol (4-NP), 4-nitro-o-phenylenediamine 
(4-NPDA), 2-nitroaniline (2-NA), 4-nitroaniline 
(4-NA) as nitroarens; methylene blue  (MB), methyl 
orange (MO), and rhodamine B (RhB) as organic 
dyes; Cr(VI) and  K3[Fe(CN)6] was examined in aque-
ous media. Developed Pd@CS/WEO AC nanocata-
lyst reduced nitroarenes, organic dyes, Cr(VI) and 
 K3[Fe(CN)6] in very short times (0–130 s). Based on 
kinetic studies, the rate constants for Pd@CS/WEO 
AC–catalyzed reduction reactions of 2–NA, 4–NP, 
4–NA, 4–NPDA, MO, RhB, [Fe(CN)6]3⁻, and Cr(VI) 
were found to be 0.018   s−1, 0.007   s−1, 0.026   s−1, 
0.012   s−1, 0.021   s−1, 0.065   s−1, 0.048   s−1, and 
0.042  s−1, respectively. Additionally, it was confirmed 
that Pd@CS/WEO AC is a long–lasting catalyst, as it 
was reused for five successive runs in the reduction of 
4–NP. In this study, we aim to design new materials 
by modifying carbon–containing waste sources with 
biological macromolecules and investigate the pos-
sible applications of these materials to remove some 
pollutants from water sources.

Keywords Waste engine oil · Chitosan · 
Microbeads · Hybrid catalyst

Introduction

Lubrication oils are chemicals with long–carbon 
chains which are produced from crude oil and used 
to prevent moving parts of machinery from friction 
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and wear. Some additives, such as viscosity index 
improvers, extreme pressure additives, and pour point 
depressants, are added to satisfy market demand 
(Widodo et al. 2020). Although lubricating oil is one 
of the main components that ensure stable engine 
operation in the automotive industry, waste engine 
oil obtained after periodic maintenance is a pollutant, 
and contains toxic components such as heavy metals, 
organometallics, and dithiophosphates, which limits 
recycling applications (Maceiras et  al. 2017). Waste 
engine oil with an estimated annual production of 
24 million metric tons could be considered a carbon 
source to design a carbon–based catalyst; in this way, 
the environmental risks can be reduced (Arpa et  al. 
2010; Suriani et al. 2015; Lam et al. 2015).

According to the United Nations (UN) UN–Water 
Integrated Monitoring Initiative for SDG 6, approxi-
mately 1.7  billion people have suffered from con-
taminated drinking water in 2021. UN also aims to 
minimize the industrial release of hazardous chemi-
cals into water sources by 2030 (United Nation 
(UN-Water) 2021). Dyes, one of the most intensely 
produced synthetic organic chemicals, is a class of 
compounds that may be toxic for aquatic environ-
ments (Tkaczyk et  al. 2020). At first glance, with 
more than 2.8 ×  105 tons of discharged wastewater, 
textile industry seems to be the main source of this 
type of pollutants (Zhao et al. 2022). Additionally, the 
energy demand for wastewater treatment limits global 
carbon footprint reduction efforts for a sustainable 
environment (Luo et  al. 2024). Therefore, design-
ing effective wastewater treatment systems with low 
energy demand has attracted great attention from 
research groups to mitigate global warming. To this 
aim, some sophisticated catalysts were designed for 
decolorization of dyes by using solar energy (Khan 
et al. 2016). Carbon–based solid supports doped with 
transition metals could be promising green catalysts 
because of their easy production processes, high effi-
ciency, and reusability to reach sustainable develop-
ment for the water sanitation goal. Some efficient gra-
phene–based heterogenous catalysts with mono– and 
bi–metallic transition metals have been fabricated to 
reduce nitroarens in aqueus media (Huang et al. 2023; 
Zhao et al. 2024; Hu et al. 2024).

Due to their high stability, non-toxicity, biocom-
patibility, and biodegradability, biopolymers are 
recognized as ideal catalyst support materials (Taya 
and Agarwal 2024). Chitosan (CS), one of the most 

important members of the biopolymer family, is pro-
duced by deacetylation of chitin (Jiménez-Gómez and 
Cecilia 2020). In addition to being inexpensive and 
environmentally friendly, CS can easily form com-
plexes with different metals due to the free –NH2 
and –OH functional groups on its polymer chain (Liu 
et al. 2024a). These functional groups also allow for 
easy chemical modifications, enabling CS to be trans-
formed into various forms such as hydrogel beads, 
films, composite, and gels (Sargin 2019; Zheng et al. 
2020). Hydrogel beads obtained using a cross–linking 
agent are among the most important forms, especially 
in catalyst systems, because they allow for the easy 
recovery of the catalyst from the reaction medium. 
Therefore, CS can be combined with various organic/
inorganic structures to form composites, and different 
metal nanoparticles can be deposited on this form to 
design new heterogeneous catalyst systems.

While making life easier with immense industrial 
processes, the innovative technologies may contrib-
ute environmental problems such as rapid deple-
tion of natural resources, clean water supply, global 
warming, and waste management (Ullah et al. 2023). 
To contribute goals of sustainable environment, this 
work aims to prepare Pd/chitosan–based microbeads 
as a new heterogenous catalyst from WEO. To date, 
besides production of diesel–like fuel by pyrolysis 
reaction (Ramanathan and Santhoshkumar 2019), lit-
erature has mainly focused on refining (Widodo et al. 
2020), purification (Fedosov et  al. 2022), recycling 
(Hamawand et  al. 2013), and rejuvenating proper-
ties of used engine oils (Al-Saffar et al. 2021). While 
WEO can be used as a sustainable carbon source in 
production of supercapacitor electrodes (Kaipan-
nan et al. 2020), and carbon dots (K et al. 2022), to 
the best of our knowledge, this is the first proposal 
to use WEO as a carbon source in the design of a 
hybrid catalyst for catalytic reduction of organic dyes, 
nitroarenes, chromium (VI), and  K3[Fe(CN)6] in tex-
tile wastewater.

Experimental

Material and methods

WEO was supplied from a local car service. All 
chemicals were reagent grade and purchased from 
Sigma–Aldrich. The solutions were prepared with 
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ultra-pure water by using Human Corporation Zeneer 
Power 1 water purification system.

Synthesis of activated carbon (WEO AC)s

In the pre–carbonization step, 125  g of WEO was 
loaded in a beaker and 40 g of concentrated sulfuric 
acid was added with continuous stirring at room tem-
perature. Then a watch glass was placed on beaker 
which was then heated to 180 ± 5  °C for 90  min. 
50 g of partly solidified product was transferred into 
a ceramic boat, and then, under  N2 atmosphere, the 
boat was heated up to 600 °C with at a heating rate of 
20 °C/min. At this point, the chamber was subjected 
to steam at a rate of 1  cm3/min for 30 min while con-
tinuously heating up to 700  °C for 1  h. Then, the 
furnace was cooled down to room temperature, and 
obtained 3.53 ± 1.03  g of carbonized product was 
transferred to a desiccator.

Synthesis of CS/WEO AC hydrogel beads

2 g of prepared WEO AC were added to a chitosan 
(CS) solution (2% w:w, 100  mL of acetic acid) and 
stirred for 3  h. The CS/WEO AC mixture was then 
transferred into a burette and dropped into solution 
of water:NaOH:ethanol (40 mL:12 g:60 mL) to form 
CS/WEO AC hydrogel beads. The resulting CS/WEO 
AC hydrogel beads were collected and washed with 
water several times. Finally, the CS/WEO AC hydro-
gel beads were cross–linked by refluxing with glyoxal 
(5 mL) in 70 mL of ethanol media. The cross-linked 
CS/WEO AC hydrogel beads were collected from 
the reaction media, rinsed with ethanol, and dried at 
room temperature.

Fabrication of Pd@CS/WEO AC hydrogel beads

The loading of Pd nano–particles (Pd NPs) on the 
surface of the CS/WEO AC hydrogel beads was per-
formed by stirring 0.15 g of  PdCl2 and 1.0 g of CS/
WEO AC hydrogel beads into 50 mL of ethanol for 
5 h at 70 °C. Pd@CS/WEO AC hydrogel beads were 
filtered, washed with ethanol and dried to apply as 
heterogenous nanocatalyst against reduction of persis-
tent environmental pollutants.

Characterization of Pd@CS/WEO AC hydrogel 
beads

The X-ray diffractometry (XRD) spectra were 
recorded in Rigaku Smartlab system. Scanning elec-
tron microscope (SEM) images of the samples were 
recorded by a JEOL JSM 6610, and the elemental 
composition of the samples was measured using an 
energy dispersive X-ray spectrometer, Oxford Instru-
ments Inca X–act, combined with SEM. The Trans-
mission Electron Microscope (TEM) images of sam-
ples were recorded by Hitachi HT-7700 equipped 
with the Lanthanum hexaboride electron beam gun 
with 40–120 eV. Surface properties were studied by 
BET analyzer (Quantachrome, USA) by nitrogen 
adsorption at −196 °C. The degassed of sample was 
performed under vacuum at 105 °C for fifteen hours 
before the measurement. The surface characteristics 
was calculated by Brunauer–Emmett–Teller (BET) 
and BJH (Barrett, Joyner, and Halenda), QSDFT 
(Quenched solid density functional theory) methods 
(Brunauer et  al. 1938; Barrett et  al. 1951; Neimark 
et al. 2009).

General procedure for the catalytic tests

Reduction of nitroarenes catalyzed by the Pd@CS/
WEO AC hydrogel beads

1  mL of nitroarene (1 ×  10–4  M) and 0.5  mL of an 
aqueous solution of  NaBH4 (0.05 M) were transferred 
into a quartz cuvette and stirred for 2 min. To initi-
ate the reduction, Pd@CS/WEO AC hydrogel beads 
were then added to the reaction media, and stirred 
until reaction was completed. UV–Vis spectra were 
recorded at regular intervals to monitor the reduction 
process. After the reduction process of nitroarenes, 
Pd@CS/WEO AC hydrogel beads were separated 
from the media, washed with water, and dried to 
check its reusability performance.

Reduction of MB, MO, and RhB catalyzed 
by the Pd@CS/WEO AC hydrogel beads

1  mL of the solution of dye (methy orange: MO, 
rhodamine B: RhB, and methylene blue: MB at 
0.1 ×  10–5 M) and 0.5 mL of  NaBH4 solution (0.05 M) 
were combined in a quartz cuvette. Then, 5  mg of 
Pd@CS/WEO AC hydrogel beads was introduced 
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into the reaction medium, and the reduction was mon-
itored with UV–visible spectroscopy and stirred until 
reaction was completed. After finishing of test, the 
recovery and reuse potential of the Pd@CS/WEO AC 
hydrogel beads were investigated by using the same 
procedure as above.

Reduction of the  K3[Fe(CN)6]

1  mL of  K3[Fe(CN)6] solution (0.002  M), 0.5  mL 
of  NaBH4 solution (0.05  M), and 5  mg of Pd@CS/
WEO AC hydrogel beads were placed into a quartz 
cuvette and stirred at room temperature. The reaction 
progress was checked with UV–visible spectroscopy 
by monitoring the changes in the absorbance band of 
 K3[Fe(CN)6] at 418  nm. Finally, Pd@CS/WEO AC 
hydrogel beads were recovered, washed, and dried 
using the same procedure as above.

Reduction of the Cr(VI)

The stock solution of Cr(VI) with a concentration 
of 3.4 ×  10–4  M was prepared using  K2Cr2O7, and 
HCOOH was used as the reducing agent in the cata-
lytic reduction experiment. 1 mL of  K2Cr2O7, 0.2 mL 
of HCOOH, and 5 mg of Pd@CS/WEO AC hydrogel 
beads were mixed and stirred at 50 °C and the reac-
tion progress of the reduction of Cr(VI) to Cr(III) was 
monitored with UV–Vis analyses.

Results and discussion

Synthesis

First, carbonization process of the WEO was investi-
gated at 600 °C under nitrogen atmosphere followed 
by activation step. Four types of activating agents, 
namely, alkaline  (K2CO3, NaOH, and  K2SiO3), acidic 
 (H3PO4,  HNO3, and  H4P2O7), neutral  (ZnCl2,  FeCl3, 
and  NaNH2), and self–activating agents can be used 
to improve the specific surface area or pore volume 
of AC. These activation agents have some such dis-
advantages as corrosion on the equipment, waste of 
washing water, and unavoidable secondary pollu-
tion (Gao et  al. 2020). Besides to reduce environ-
mental risk as low as possible, we used steam acti-
vation for its low cost and efficiency (Mopoung and 
Dejang 2021). Then activated carbon was mixed 

with chitosan solution, and mixture reacted with gly-
oxal to obtain cross–linked hydrogel beads. Finally, 
Pd(0) was decorated on the surface of hydrogel beads 
(Scheme 1).

Structural characterization

The porosity characteristics of the obtained prod-
uct (AC) was studied by BET method. The specific 
surface area and total pore volume of AC was cal-
culated as 615.4   m2   g−1 and 0.62   cm3   g−1, respec-
tively. The average pore diameter of AC was calcu-
lated size 4  nm. Mesopore volume was calculated 
as 0.4   cm3   g−1 (65%) with BJH method. As can be 
seen in Fig. 1, AC showed type II isotherm with H4 
type hysteresis according to IUPAC classification. In 
the AC isotherm, the sharp bend in the low–pressure 
region indicates microporosity resulting from mon-
olayer adsorption. The equilibrium state in the range 
of 0.35–0.5 P/P0 indicates that monolayer adsorption 
is completed, and multilayer adsorption has started. 
The unlimited increase in multilayer adsorption at 
P/P0 = 1 suggests the presence of macropores in the 
structure. H4 hysteresis indicates capillary conden-
sation in the presence of narrow–necked pores and 
can be seen in micro–mesoporous activated carbons 
(Thommes et al. 2015; Wang and Yu 2017). The pore 
size distribution of AC calculated by QSDFT method 
confirms the micro– and meso–porous structure, pre-
dominantly meso pores (Fig. 1). The specific surface 
area of Pd@CS/WEO AC was measured as 5  m2  g−1 
by single-point calculation using the BET method.

XRD patterns of CS/WEO AC and Pd@CS/WEO 
AC were recorded X–ray Diffractometer at 2θ from 
5° to 90° (Fig.  2). In the XRD pattern of CS/WEO 
AC, which consists of a mixture of mineral oil–based 
activated carbon and chitosan, the bands observed at 
2θ = 9.76° (020) and 20.08° (110) belong to semicrys-
talline chitosan, and the peak observed at 2θ = 34.62° 
(311) belongs to  Fe3O4 (Han et  al. 2014; Hao et  al. 
2021). While the peaks of chitosan in the XRD pat-
tern of Pd@CS/WEO AC remained unchanged, the 
diffraction peaks observed at 2θ = 40.02°, 46.5°, 
68.1°, 82.2° and 86.07 match indexed reflections 
to the (111), (200), (220), (311) and (222) diffrac-
tion planes of face-centered cubic (fcc) lattice of Pd 
(JCPDS = 46–1043). The disappearance of the  Fe3O4 
peak in Pd@CS/WEO AC indicates that  Fe3O4 is 
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Scheme 1  Synthesis scheme of Pd@CS/WEO AC microbeads

Fig. 1  BET isotherm and the pore size distribution of AC

Fig. 2  XRD patterns of CS/WEO AC (top) and Pd@CS/WEO 
AC (bottom)
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removed from the structure during Pd(0) catalyst 
preparation.

SEM images and EDS results of the Pd@CS/
WEO AC sample are presented in Fig.  3. Figure 3a 
shows that the catalyst produced as a chitosan com-
posite forms flat spherical forms as expected in the 
production method. As seen in Fig.  3b, when the 
material’s surface is examined more closely, it is seen 
that cracks are spread throughout the material. EDS 
results of the Pd@CS/WEO AC sample showed that 
there was 14.9% Pd in the examined region of the 
structure. In addition, it was observed that the struc-
ture of the sample contained carbon, nitrogen and 
oxygen, as expected (Fig. 3c and d).

TEM images of Pd@CS/WEO AC hydrogel 
beads were recorded by Hitachi HT-7700 and given 

in Fig.  4. It seen from Fig.  4 that Pd–nanoparticles 
have been successfully decorated on the surface of 
the CS/WEO AC solid support. The size of the par-
ticle crystalline structures of Pd(0) nanoparticles was 
determined by using the Scherrer Eq.  (1) with the 
X–ray line expansion method (Scherrer 1918; Wyck-
off 1963).

where D is the particle size in nanometers, λ is the 
wavelength of the incident X–ray (1.54056  A). For 
CuKα radiation, k is a constant which equals to 0.94, 
β is the peak width at half maximum intensity and θ 
is the peak position. The sharp peaks observed in the 

(1)D =

k�

�
D
cos�

Fig. 3  SEM and EDS images of Pd@CS/WEO AC



Cellulose 

Vol.: (0123456789)

XRD pattern of Pd(0) indicate that the material has 
a nanocrystalline structure. According to the XRD 
patterns of the produced material, no mass residue 
and impurity was found. The data of the most intense 
peak observed at 2θ = 40.02 degree on the XRD pat-
tern was used while calculating the microcrystalline 
size of Pd(0). The crystalline size of Pd(0) in the 
material was calculated as 16.8  nm by the Scherrer 
equation (Scherrer 1918).

Catalytic activity evaluation of Pd@CS/WEO AC 
hydrogel beads

The progress of the reductions of 2–nitroani-
line (2–NA), 4–nitroaniline (4–NA), 4–nitrophe-
nol (4–NP), and 4–nitro–o–phenylenediamine 
(4–NPDA) was studied using UV–vis spectropho-
tometer. The changes in the intensity of character-
istic peaks were monitored at 414  nm for 2–NA, 
402  nm for 4–NP, for 385  nm for 4–NA, 408  nm 
for 4–NPDA, after transferring Pd@CS/WEO AC 
hydrogel beads into the respective solutions of 

2–NA +  NaBH4, 4–NP +  NaBH4, 4–NA +  NaBH4, 
and 4–NPDA +  NaBH4 (Fig.  5). (Table  S1. and 
Figures  S1, S2, S3, S4, S5, S6, S7, S8, S9). The 
absorption intensities for 2–NA, 4–NP, 4–NA and 
4–NPDA remained unchanged for a very long time 
in the absence of any Pd@CS/WEO AC hydrogel 
beads, which revealed that the reductions did not 
proceed without Pd@CS/WEO AC hydrogel beads. 
As demonstrated in Fig. 5a, the spectrum of 2–NA 
indicated strong absorption peaks at 414  nm and 
284  nm. Upon the addition of Pd@CS/WEO AC 
hydrogel beads into the  NaBH4 + 2–NA solution, 
the peak intensity at 414 nm dropped with time due 
to catalytic reduction, and the absorption band for 
2–NA shifted from 284 to 293 nm. After 45  s, the 
peak at 414  nm completely disappeared, confirm-
ing that 2–NA was reduced to o–phenylenediamine. 
The aqueous solution of 4–NP had light yellow 
color, which gave a peak at 320  nm in accordance 
with literature data, and it turned bright yellow after 
the addition of  NaBH4, because of its conversion 
to the 4–nitrophenolate ion (4–NPT). Additionally, 

Fig. 4  TEM images of Pd@CS/WEO AC hydrogel beads
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we observed that the peak associated with n—π* 
transitions of phenolic oxygen at 320  nm shifted 
to 402  nm, providing further evidence for the for-
mation of 4–NPT (Khalil et  al. 2024). When Pd@
CS/WEO AC hydrogel beads were introduced into 
the cuvette, the peak intensity of 4–NPT regu-
larly declined, and the formation of a new peak 
at 302  nm appeared. The complete reduction of 
4–NP has been taken place in 130  s. The progress 
of 4–NA and 4–NPDA reductions was also moni-
tored by absorbance measurements, and a decline 
in absorbance at 385 nm and 408 nm for 4–NA and 
4–NPDA was observed, respectively. The addition 
of Pd@CS/WEO AC hydrogel beads into solutions 
(4–NA +  NaBH4 and 4–NPDA +  NaBH4) caused 
these absorption peaks to gradually disappear, and 
simultaneously, small shoulder peaks were observed 
at 307  nm and 309  nm, respectively. As seen in 
Fig. 5c and d, 4–NA and 4–NPDA were successfully 
reduced to their corresponding amino compounds 
(1,4–phenylenediamine and 1,2,4–benzenetriamine) 

within 1  min and 75  s, respectively. Addition-
ally, we observed that the aqueous solutions of 
all the studied nitro compounds displayed yellow 
color, and after reduction, their solutions became 
colorless.

The kinetic rate constants  (kapp) were calculated 
as 0.018  s−1, 0.007  s−1, 0.026  s−1, and 0.012  s−1 for 
2–NA, 4–NP, 4–NA, and 4–NPDA (Fig. 6), respec-
tively, by using the integral rate law corresponding 
to first order reactions using following equation:

where  ct and  c0 mean to the concentrations of organic 
and inorganic contaminants initially and at measured 
reaction time (t), respectively, and k  (s−1) is the rate 
constant.

Catalytic efficiency of Pd@CS/WEO AC hydro-
gel beads in reductive degradation of MB, MO, 
and RhB was also investigated (Table  S1). The 

(2)ln
c
t

c
0

= −kt

Fig. 5  UV–Vis spectra of 2–NA a, 4–NP b, 4–NA c, and 4–NPDA d catalyzed by Pd@CS/WEO AC hydrogel beads
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UV–Vis spectra of MB, MO, and RhB are presented 
in Fig. 7. The figure shows that MB, MO, and RhB 
have maximum absorption peaks at 667, 467, and 
551 nm, respectively. It was observed that the peak 
intensities at 667  nm for MB, at 467  nm for MO, 
and at 551  nm for RhB decreased over time when 
utilizing Pd@CS/WEO AC hydrogel beads as nano-
catalyst together with  NaBH4 as reducing agent. 
After 25  s and 30  s, the MO and RhB dyes were 
completely degraded by Pd@CS/WEO AC hydro-
gel beads, and their solutions became colorless dur-
ing these times. The reductive degradation of MB 
occurred instantly upon the addition of Pd@CS/
WEO AC hydrogel beads to the reaction medium. 
Additionally, the rate constants for MO and RhB in 
the presence of Pd@CS/WEO AC hydrogel beads 
were found as 0.021  s−1 and 0.065  s−1, respectively 
(Fig. 7).

Figure  8 represents proposed degradation mecha-
nism for reduction of rhodamine B into leuco–rhoda-
mne B which is less toxic, and biodegradable com-
pared with RhB (Bhat et al. 2020; Liu et al. 2024b). 

Initially, hydride transfer takes place from sodium 
borohydride to Pd–NPs on microbeads followed by 
adsorption of RhB on microbeads in rate determining 
step (Step 2). Then, in Step 3, electrons from hydride 
on NPs were transferred to RhB forming leuco–rho-
damine B. Finally, desorption of leuco–rhodamine 
from surface of catalyst allows Pd@CS/WEO AC 
hydrogel beads to rejoin the reduction cycle.

In order to validate the applicability of Pd@
CS/WEO AC hydrogel beads, we tested its perfor-
mance in the reduction of  K3[Fe(CN)6], an inor-
ganic contaminant (Table  S1). Aquation solution 
of  K3[Fe(CN)6] displayed a strong peak at 418 nm. 
In the absence of the Pd@CS/WEO AC hydrogel 
beads, it was determined that no reaction occurred, 
no color change of solution was observed, and the 
peak intensity at 418  nm remained unchanged. 
When the Pd@CS/WEO AC hydrogel beads 
were added to the reaction solution containing 
 K3[Fe(CN)6] +  NaBH4, the existing peak at 418 nm 
began to decrease and disappeared within 30  s. 
Additionally, the catalytic reduction of  K3[Fe(CN)6] 

Fig. 6  Rate constants for 2–NA a, 4–NP b, 4–NA c, and 4–NPDA d reductions
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was confirmed with reaction solution became color-
less over time. This observation revealed that reduc-
tion of [Fe(CN)6]−3 to [Fe(CN)6]−4 was completed 
out by Pd@CS/WEO AC hydrogel beads in short 
period of time, and rate constant was calculated as 
0.048  s−1 (Fig. 9).

In addition to the reduction of nitroarenes, organic 
dyes, and K₃[Fe(CN)₆], this part also investigated the 
efficiency of Pd@CS/WEO AC hydrogel beads in the 
reduction of Cr(VI) (Table S1). Cr(VI) is considered 
the most toxic form of chromium. Because Cr(III) is 
less toxic, as a result, catalytic reduction of Cr(VI) is 
a current research interest (Becquer et al. 2003). The 
reduction was easily monitored by UV–Vis analysis. 
As clearly seen in Fig.  10, the Cr(VI) solution gave 
a peak at 352 nm. The reduction started immediately 
after the addition of the 5  mg of Pd@CS/WEO AC 
hydrogel beads to the K₂Cr₂O₇ + HCOOH mixture 
and the peak intensity at 352 nm decreased over time. 
The peak intensity completely disappeared within 
35  s, accompanied by the yellow solution turning 
colorless. These observations confirmed the con-
version of Cr(VI) to Cr(III) by Pd@CS/WEO AC 
hydrogel beads. To further confirm the formation 
of Cr(III), after the reduction of the Cr(VI) reaction 
was completed, an excess amount of NaOH solu-
tion was added to the reaction mixture, and it was 
observed that the color changed to green. The green 
color formed after the addition of NaOH indicated 

Fig. 7  UV–Vis spectra and rate constant of MO (left), RhB (middle) and MB (right) catalyzed by Pd@CS/WEO AC hydrogel beads

Fig. 8  Proposed reaction mechanism for reduction of RhB
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the formation of chromium(III) hydroxide, confirm-
ing the successful reduction of Cr(VI) to Cr(III). 
Additionally, the rate constant was determined to be 
0.042  s−1 after the performed kinetic experiments.

As demonstrated in Fig.  11, it is proposed that 
 Cr6+ was reduced to  Cr3+ by Pd@CS/WEO AC 
hydrogel beads in a two–stage process. In the first 
stage, formic acid was decomposed into hydrogen 
and carbon dioxide on the surface of the Pd@CS/
WEO AC hydrogel beads after the addition of the 
catalyst to a mixture of Cr(VI) and formic acid. 
Then,  Cr6+ was reduced by the nascent hydrogen 
generated by the decomposition of HCOOH (Nas-
rollahzadeh and Issaabadi 2019).

Table  1 summarizes comparison of the perfor-
mance of Pd@CS/WEO AC hydrogel beads with 
other catalysts reported in the literature for the 
reduction of 4–NP, MO, RhB, and MB. The Pd@
CS/WEO AC hydrogel beads reported in this study 
showed better performance compared to other cata-
lysts based on reaction time or rate constant.

Fig. 9  Catalytic reduction and rate constant of  K3[Fe(CN)6] catalyzed by Pd@CS/WEO AC hydrogel beads

Fig. 10  Catalytic reduction and rate constant of Cr(VI) catalyzed by Pd@CS/WEO AC hydrogel beads

Fig. 11  The proposed reduction of Cr(VI) to Cr(III) using 
Pd@CS/WEO AC hydrogel beads



 Cellulose

Vol:. (1234567890)

Recyclability of Pd@CS/WEO AC hydrogel beads

High reusability is one of the most significant fac-
tors for a catalyst in both academic and industrial 
applications, besides its high catalytic performance. 
Thus, reusability and stability of Pd@CS/WEO AC 
hydrogel beads were investigated in the 4–NP reduc-
tion. Due to the nature of Pd@CS/WEO AC hydrogel 
beads, it was easily recovered from the reaction media 
by filtering out. Recovered Pd@CS/WEO AC hydro-
gel beads were washed with water and dried for next 
runs. Pd@CS/WEO AC hydrogel beads were reused 
for five successive runs by recovering them at each 
stage, and it was determined that its performance and 
structure remained almost the same (Fig. 12).

Conclusions

Recently, disposal of environmental pollutants is one 
of the important research areas. In this study, it was 
aimed to investigate the effect of the Pd@CS/WEO 
AC catalyst on some environmental pollutants such 
as aromatic nitro compounds, textile dyes and inor-
ganic oxidants. An activated carbon material was pro-
duced from WEO by steam activation and the struc-
ture of the material was characterized. The produced 

activated carbon has 615.4   m2   g−1 surface area and 
contains predominantly mesopores. The obtained 
activated carbon was converted into microbeads using 
chitosan, and a heterogeneous catalyst was produced 
by doping Pd(0) on the resulting beads. The catalyst 
Pd@CS/WEO AC was characterized by SEM, TEM, 
BET, XRD analysis, and the catalytic effeciency of 
the catalyst was examined in the reduction of vari-
ous organic and inorganic contaminants, including 

Table 1  Comparison of the catalytic power of Pd@CS/WEO AC hydrogel beads with different catalysts for the reduction of 4–NP, 
MO, RhB, and MB

Pollutant Catalyst Time Rate constant (k) References

4–NP Au NPs@C longa 100 s 0.019  s−1 Xie et al. (2024)
Fe3O4@ILD-CoCu 180 s 0.366  min−1 Gholinejad et al. (2024)
GO-DAP-AgNPs 12 min 7.548 ×  10−4  s−1 Nimita Jebaranjitham et al. (2019)
Pd@CS/WEO AC 130 s 0.007  s−1 present study

MO 0.3Ag/HA 5 (± 0.15) min 0.92(± 0.045)  min−1 Ghosh et al. (2015)
Ag/TiO2 9 min – Atarod et al. (2016)
Cu-Ag/GP 4 min 7.67 ×  10−3  s−1 Ismail et al. (2018)
Pd@CS/WEO AC 25 s 0.021  s−1 Present study

RhB Ag NPs/Thymbra 50 s 8.64 ×  10−2  s−1 Veisi et al. (2018)
S-2 catalyst 14 min 3.73 ×  10−1  s−1 Yang et al. (2014)
Cu/GO/MnO2 4 min – Naghdi et al. (2018)
Pd@CS/WEO AC 30 s 0.065  s−1 Present study

MB BCDs-Ag/MNPs 60 s 0.0656  s−1 Zahedifar et al. (2020)
Fe3O4@TA/Ag 40 s 0.0685  s−1 Veisi et al. (2019)
Ni/CPM-1 13 min 0.583  min−1 Veerakumar et al. (2015)
Pd@CS/WEO AC immediately – Present study

Fig. 12  Reusability of the Pd@CS/WEO AC hydrogel beads 
for the reduction of 4–NP



Cellulose 

Vol.: (0123456789)

nitroarenes (4–NA, 2–NA, 4–NP, 4–NPDA), organic 
dyes (MB, MO, RhB), Cr(VI), and K₃[Fe(CN)₆]. 
The Pd@CS/WEO AC catalyst reduced nitroarenes 
in 45–130 s, organic dyes in 0–30 s, [Fe(CN)₆]3− in 
30  s, and Cr(VI) in 35  s. The degradation rate con-
stants of catalytic reactions are also higher than simi-
lar studies in the literature. Based on kinetic studies, 
the rate constants for Pd@CS/WEO AC–catalyzed 
reductions of 2–NA, 4–NP, 4–NA, 4–NPDA, MO, 
RhB, [Fe(CN)6]3⁻, and Cr(VI) were found to be 
0.018  s−1, 0.007  s−1, 0.026  s−1, 0.012  s−1, 0.021  s−1, 
0.065   s−1, 0.048   s−1, and 0.042   s−1, respectively. 
Moreover, Pd@CS/WEO AC was easily recovered 
by filtration and reused five times with high catalytic 
activity. When compared with similar studies in the 
literature, it was seen that the produced catalyst has 
high efficiency in terms of both degradation rates and 
reusability. In addition to its high catalytic activity 
and reusability, the Pd@CS/WEO AC catalyst is a 
promising catalytic system for wastewater treatment 
due to its easy preparation and low cost, along with 
its environmentally friendly nature.
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