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ABSTRACT

ProSNEx (Protein Structure Network Explorer) is a
web service for construction and analysis of Pro-
tein Structure Networks (PSNs) alongside amino
acid flexibility, sequence conservation and annota-
tion features. ProSNEx constructs a PSN by adding
nodes to represent residues and edges between
these nodes using user-specified interaction dis-
tance cutoffs for either carbon-alpha, carbon-beta
or atom-pair contact networks. Different types of
weighted networks can also be constructed by us-
ing either (i) the residue-residue interaction ener-
gies in the format returned by gRINN, resulting in
a Protein Energy Network (PEN); (ii) the dynami-
cal cross correlations from a coarse-grained Normal
Mode Analysis (NMA) of the protein structure; (iii)
interaction strength. Upon construction of the net-
work, common network metrics (such as node cen-
tralities) as well as shortest paths between nodes
and k-cliques are calculated. Moreover, additional
features of each residue in the form of conservation
scores and mutation/natural variant information are
included in the analysis. By this way, tool offers an
enhanced and direct comparison of network-based
residue metrics with other types of biological infor-
mation. ProSNEx is free and open to all users without
login requirement at http://prosnex-tool.com.

INTRODUCTION

Proteins mediate a great number of functions in a living cell.
The folded state (i.e. the shape) plays a major role in deter-
mining thermostability (1–3), dynamics (4,5) and thereby
the function of the protein. The shape, in turn, is highly
dependent on the sequence of amino acid residues, their

physicochemical properties and the various types of chem-
ical interactions (bonded or non-bonded) they are involved
in within the folded state (5–12). Sequence conservation and
protein stability as well as dynamics have been found to be
closely connected in several protein families (6,7,13–17).

In order to better understand the role played by each
residue in shaping protein function, it is proper to consider
the protein structure as a network of amino acids that in-
teract with each other in the three-dimensional space via
various chemical interactions. In the past few years, net-
work formalism has been a popular approach for studying
individual proteins as well as protein complexes with the
aim of understanding the underlying structural organiza-
tion within the protein structure and elucidating the im-
portance and functional roles of individual residues (18–
23). In this approach, a Protein Structure Network (PSN)
is constructed by taking residues within the structure as
nodes and adding edges between them using distance cut-
offs or other more advanced criteria. Weights can also be
given to edges or residues to construct weighted networks
in order to emphasize the interaction strength, e.g. by using
force-field based interaction energies, atom-atom contacts
or pairwise residue dynamic coupling. Dynamic coupling
between residues can be obtained by constructing Dynami-
cal Cross-Correlation Maps (DCCMs) from Molecular Dy-
namics (MD) simulation trajectories (24–29). If interaction
energies are used for edge weight assignment, the network
becomes a ‘Protein Energy Network’ (PEN) (30–33). Once
the network is constructed, an analysis of residue-based lo-
cal or global network metrics including centrality measures
can be useful to detect non-evident functions of residues
such as relative importances for protein stability (19,30,34–
36), allosteric communication between parts of protein (37–
42) and other family-specific functions (e.g. catalytics sites
in enzymes) (19,43–45).

The network approach is very useful for a fast initial char-
acterization of protein dynamics as well. To this end, Elas-
tic Network Models (ENMs) have found widespread usage
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among researchers (46–52). In an ENM, usually a selected
set of atoms from each residue (e.g. carbon-alpha atoms) are
connected to each other with hypothetical springs, yielding
a harmonic interaction network. A Normal Mode Anal-
ysis (NMA) is then performed to generate harmonic vi-
brational modes of motion and flexibility profiles. Despite
the assumption of harmonic motion around the native pro-
tein structure, flexibility predictions by the ENM approach
has been found to correlate well with the global coopera-
tive modes of motions generated from experimentally elu-
cidated conformation ensembles or atomistic MD simula-
tions (52). Following the first application by Tirion on all-
atom systems (53), it has been also found that reducing the
resolution by coarse-graining the protein structure and us-
ing only alpha carbons to represent the topology of the pro-
tein structure is sufficiently enough for accurate predictions.
There are two basic types of ENMs: the Gaussian Network
Model (GNM) (47) and the Anisotropic Network Model
(ANM) (48,50,54). In GNM, fluctuations are assumed to be
isotropic (i.e. distributed equally along different directions
in the coordinate system) whereas in ANM, directionality
of motions, and thus the three-dimensionality, is included.

Taking only a single protein structure and cutoff dis-
tances as input, simple PSN and ENM approaches are fast
and powerful for getting valuable initial insights regarding
the structural and dynamical behavior of a protein. To this
end, several freely accessible web-services have been offered
to researchers for the construction, visualization and analy-
sis of PSNs and ENMs. For PSNs, NAPS (55) server offers
an analysis based on a variety of weighted and unweighted
network types. RING 2.0 (56) offers a similar service in ad-
dition to identifying different types of chemical interactions
between residues and the results can be visualized by us-
ing Cytoscape (57). Similarly, RINalyzer (58) and structure-
Viz integrate Cytoscape (57) and UCSF Chimera (59) to
create and visualize RINS. CSU (60), PSN-Ensemble (61),
NetworkAnalyzer (62) and PyMOL (63) plug-ins xPyder
(64) and PyInteraph (65) can also be used for similar pur-
poses. The Protein Contact Atlas (66) offers a rich visual-
ization interface for examining different types of contacts
within protein structures, including residue-centric network
metrics alongside mapping of custom metrics such as se-
quence conservation or thermodynamics stability changes
that can be supplied by the user. VERMONT 2.0 (67) is an-
other web-server for performing network analysis on pro-
tein structures while integrating additional features such
as sequence conservation, residue physicochemical param-
eters and solvent accessibility. For ENM-based protein dy-
namics analysis, elNemo (68), the ANM 2.1 (69,70), iGNM
2.0 (71) and DynOmics ENM (72) servers are available.
Bio3D-web also offers user-friendly interface for perform-
ing NMA (Bio3D-NMAweb) on single protein structures
(73). DynaMut server offers NMA-based prediction of sta-
bility changes upon amino-acid mutations (74). WebPSN
web-server combines ENM and NMA approaches for find-
ing allosteric pathways in protein structures (75).

In a typical research workflow involving an investiga-
tion of relationships between sequence, structure, dynam-
ics and function of a given protein of interest; all relevant
features, such as conservation scores for the amino-acid se-
quence, residue-centric network metrics, flexibility profiles

and other functional annotations must be obtained to fa-
cilitate the analysis. Researches with sufficient technical ex-
pertise may choose to utilize customized workflows by uti-
lizing multiple software packages for this purpose. For non-
experts, however, the options are limited. Although some
of the aforementioned web-servers offer an integration of
more than one type of feature to some extent, there is cur-
rently no web-service available offering extensive compara-
tive analysis features involving PSN analysis, sequence con-
servation and protein flexibility profiles as well as other
functional annotations.

Aiming to fill this gap, we have developed the ProSNEx
(Protein Structure Network Explorer) web-server. ProS-
NEx offers enhanced PSN-based protein structure analysis
by integrating sequence conservation profiles, protein anno-
tations and flexibility profiles from different types of ENM
into a single user interface.

MATERIALS AND METHODS

Protein structure networks and elastic network models

ProSNEx offers the construction of several types of un-
weighted and weighted networks. Unweighted networks
can be constructed by selecting one of the four methods
for edge assignment between nodes (carbon-alpha, carbon-
beta, atom-pair interaction and interaction strength). In
the carbon-alpha and carbon-beta networks, only carbon-
alpha or carbon-beta atom positions from the input PDB
structure are used to specify the edges in the network, re-
spectively. Edges between nodes are added only if two atoms
are closer than the user-specified threshold (cutoff) distance.
In the atom-pair interaction network, edges between nodes
are added if at least one atom from a residue is closer
than the user-specified distance threshold to at least one
atom from another residue. In the interaction strength net-
work, edges between nodes are added only if the interaction
strength is higher than the user-specified threshold. The in-
teraction strength calculations are based on (34).

Once the network edge assignment type is selected, ProS-
NEx can also assign weights to edges, yielding a weighted
network. Here, four options are offered to the user. Us-
ing either one of the first two options; the user can con-
struct a weighted PSN by extracting weights from DCCMs
calculation from of GNM/ANM simulations or the NMA
method of Wako et al. (76–78). In the latter case, normal-
ized and time-averaged cross-correlations, as reported at the
Promode-elastic database of PDB Japan, are used (77,79).
Hence, this option is not available for custom PDB files. The
GNM and ANM calculations are performed by ProSNEx
server.

In the third option, the user is given the option to choose
average force-field based interaction energies from a MD
simulation trajectory as edge weights to construct a PEN.
Here, average interaction energies in the file format returned
by gRINN (31) is accepted. In the last option, the interac-
tion strength values are taken from (80).

Following network construction, global and local net-
work metrics are calculated. Specifically, average degree,
path length, network density, clustering coefficient as well
as node (residue)-centric metrics including node degrees,
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Figure 1. (A) Select PDB window. (B) Network settings specification window (C–E) 3D structure of the molecule, Analysis Tools and Residue Interaction
Network windows.

betweenness-centrality and closeness-centrality are calcu-
lated and reported. Additionally, shortest path between two
selected nodes and k-cliques are calculated as well.

Sequence conservation profiles, protein annotations and in-
teratomic interactions

If available, ProSNEx retrieves sequence conservation from
the CONSURF database (CONSURF-DB), which in-
cludes conservation scores calculated by the CONSURF
method (81–83). If the user supplies a custom PDB file in-
stead of a PDB access code or if no CONSURF score is
available at CONSURF-DB for the given PDB access code,
an option to import conservation scores in the format re-
turned by the CONSURF server is available following net-
work construction. ProSNEx also retrieves annotations (if
available) from the Uniprot database, including sequence
variants, mutagenesis experiment results, etc. (84,85). Fi-
nally, interatomic interactions within the input structure are
retrieved by using Arpeggio and annotated on the network
structure (86).

RESULTS

Use case: investigating the sequence–structure–dynamics re-
lationships in TEM-1 �-lactamase

We demonstrate the use of ProSNEx server for investigating
the sequence–structure–dynamics relationships in a TEM-1
�-lactamase enzyme from Escherichia coli.

ProsNEx main page includes a simple interface for enter-
ing a PDB code, selection of protein chains (if applicable)
and network settings, respectively. (Figure 1A-B). Starting
from a TEM-1�-lactamase structure (PDB code: 1ZG4), a
weighted PSN (carbon-alpha network, threshold distance: 7
Å) was constructed using cross-correlations from an ANM
simulation (threshold distance: 15 Å) as edge weights.

Figure 1C–E gives an overview of outputs from ProS-
NEx. Upon finishing calculations, the tool presents three
major windows for displaying the 3D structure of the input
molecule (Figure 1C), a 2D network representation (Figure
1E) and a window titled ‘Analysis Tools’ (Figure 1D). The
Analysis Tools window is the access point for investigating
further features included in ProSNEx analysis. In Figure 2,
a collection of plots, all accessible from the Analysis Tools
window, is given. Figure 2C and Figure 2C shows two scat-
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Figure 2. (A) Comparison of multiple node (residue) metrics on protein structure. (B) An ‘all-in-one’ Scatter Plot shows scatter plots between degree,
betweenness-centrality, closeness-centrality, fluctuations (if NMA is used for edge-weight assignment), sequence conservation scores, B-factors and clus-
tering coefficients. (C, D) Selected scatter plots between closeness-centrality and fluctuation and betweenness-centrality and sequence conservation scores.
(E) Cross correlation plot when NMA is used for edge-weight assignment.

ter plots of particular interest: in the first one, the close-
ness centrality is seen to be correlated to fluctuation pro-
files from ANM, confirming its usefulness as a rigidity de-
scriptor (87). In Figure 2D, high betweenness-centrality val-
ues are seen to coincide well with highly conserved residues,
highlighting a relationship between sequence evolution and
dynamic cross-talk within the ß-lactamase structure.

IMPLEMENTATION

The tool is implemented in JavaScript and jQuery. The web-
interface is built using Bootstrap CSS style. PSN is con-
structed and analysed using by JSNetworkX (88) library.
Cytoscape.js (57) framework is used for network visualiza-
tion. PV is used for protein structure visualization (89). For
GNM and ANM calculations, ProDy is used (90).

CONCLUSION

We have developed ProSNEx server which provides a novel
and enhanced analysis of protein structures using network
formalism. The tool is designed to be very user friendly
and easily adaptable for all researchers in the field of pro-
tein structural biology. The major novelty of the tool lies
in the presence of features such as: (i) comparison of mul-
tiple single residue metrics from network analysis as well as
other additional information such as sequence conservation
scores and Uniprot annotations and (ii) usage of dynamic
cross-correlations between pairs of amino acids from NMA
in the weighted PSNs.

DATA AVAILABILITY

ProSNEx is free and open to all users without login re-
quirement. The server does not store any data submitted by
the user. It is compatible with major web browser including
Chrome, Firefox and Safari.
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