
INTRODUCTION

The aim of prosthetic rehabilitation is to improve 
masticatory function, esthetics, and speech. Although 
different materials have been used for denture base 
materials, poly(methyl methacrylate) (PMMA) has 
been extensively used since 19371,2). PMMA has the 
advantages of a lifelike appearance and stability in 
the oral environment, and it is easy to process, repair, 
and polish1,3,4). However, PMMA also has several 
disadvantages, including allergic reactions to the 
residual monomer, insufficient surface hardness, poor 
wear resistance, and polymerization shrinkage1,5,6). 
Additionally, PMMA does not have optimum physical 
properties of flexural and impact strength7,8).

Fracture of the denture base materials constitutes 
a challenge and remains an unresolved problem. The 
fracture of the denture base usually occurs at the 
midline of the dental prosthesis due to flexural fatigue 
failure from repeated masticatory forces caused by cyclic 
deformation of denture base or high impact forces that 
occur as a result of dropping the prosthesis3,9,10). Three-
point bend test more closely simulated the type of stress 
that is applied to the prosthesis during mastication10,11). 
Therefore, the flexural strength of denture base materials 
is widely evaluated by this test.

Hardness is also an essential physical property 
of denture base materials and indicates its resistance 
to plastic deformation12,13). Hardness influences ease 
of cutting, finishing, and polishing which reduces 
scratches that can compromise fatigue strength and 
lead to premature failure. Finishing and polishing are 
extremely important to achieve ideal esthetics and good 
oral hygiene4,12). The surface microhardness of acrylic 
resins is directly related to the longevity of the prosthesis 
in which the greater the microhardness, the greater its 

resistance to abrasion and fracture of the denture base 
material13,14). In addition, the microhardness is related to 
wear of dental materials. It may be more appropriate for 
the evaluation of physico-mechanical properties and is 
considered to be a parameter for the residual monomer 
content. Therefore, the Vickers hardness test is a 
simple, effective way to assess the degree of conversion 
of monomer to polymer during polymerization13-15).

The polymerization reaction of acrylic resins has 
been initiated by heat, light, auto, microwave, or 
injection molding16-18). Heat polymerization is the most 
widely used polymerization method of acrylic resin 
denture base materials and is usually carried out in 
a heated water bath19). During the polymerization 
reaction of acrylic resins, the conversion of monomers 
to polymers is not accomplished and varying amounts of 
free or unreacted monomer, called residual monomers, 
are retained in the denture base material15). In addition, 
porosity may occur in the denture base material after 
polymerization20). The residual monomer content and 
porosity affect the physical and mechanical properties of 
the acrylic resins15,20). It has been stated that the residual 
monomer content and porosity may be reduced by the 
polymerization method and cycle15,19-21). Bural et al.19) 
have investigated that effect of polymerization cycles 
on residual monomer content and in vitro cytotoxicity 
of denture base materials. Several studies have 
evaluated that the properties of denture base materials 
polymerized with conventional water bath, microwave 
energy, and light17,20,21). There are limited reports in the 
literature evaluating the effect of polymerization cycles 
on the physico-mechanical properties of acrylic resins. 
Therefore, the purpose of the present investigation was 
to evaluate the effect of different polymerization cycles 
on flexural strengths and microhardness of two different 
acrylic resin denture base materials. The first null 
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Table 1	 Denture base materials used in present study

Denture base 
materials

Product name Manufacturer Chemical composition Batch number

Heat-polymerized 
acrylic resin

Meliodent
Heraeus Kulzer, 
Hanau, Germany

Powder: Methyl methacrylate, Ethyl 
hexyl acrylate, N-octyl methacrylate
Liquid: Methyl methacrylate, glycol
dimethacrylate, dimethyl p-toluidine

Powder: 10MAR048
Liquid: 012330

Heat-polymerized 
acrylic resin

Paladent 20 Heraeus Kulzer

Powder: Methyl methacrylate, Ethyl 
hexyl acrylate, N-octyl methacrylate
Liquid: Methyl methacrylate, glycol
dimethacrylate, dimethyl p-toluidine

Powder:*
Liquid: 012337

*Manufacturer does not provide batch number.

Table 2	 Polymerization cycles (polymerization temperatures and polymerization times)

Code Polymerization cycle

A

B

C

D

E

F

G

H

I

J

9 h at 74°C 

9 h at 74°C and then 100°C boiling water for 3 h

9 h at 74°C and then 100°C boiling water for 30 min

3 h at 74°C and then 100°C boiling water for 1 h

90 min at 74°C

90 min at 74°C and then 100°C boiling water for 30 min

30 min at 74°C and then 100°C boiling water for 30 min

100°C boiling water for 3 h

100°C boiling water for 1 h

100°C boiling water for 30 min

hypothesis is that polymerization cycles are not affect 
the flexural strengths and microhardness of denture 
base materials. The second null hypothesis is that the 
flexural strengths and microhardness are not different 
according to the denture base materials.

MATERIALS AND METHODS

Two types of commercially available heat-polymerized 
acrylic resin denture base materials were tested in the 
present study (Table 1). Eighty rectangular specimens 
(65.0 mm long×10.0 mm wide×2.5 mm in height) of 
each material were prepared according to American 
Dental Association (ADA) Specification No. 1222) using 
10 different polymerization cycles (Table 2). Heat 
polymerization was performed in a thermostatically 
controlled water bath (PolyScience, Niles, IL, USA), 
and then the flasks were allowed to slowly cool down in 
the water bath. After the polymerization process was 
completed, residual acrylic resin was carefully removed 
with a tungsten carbide bur at low speed. The specimens 
were then stored in distilled water at 37±1°C for 24 h 
before testing.

A three-point bend test was performed immediately 
after removing the specimens from the distilled water 
without drying the specimens. This test was carried out 
on a universal testing machine (Model 2519-106, Instron, 
Norwood, MA, USA). A custom-made stainless steel 
device with a 50 mm span between the two supports was 
used, and the crosshead speed was set at 5 mm/min. A 
load was applied to the center of the specimens. The load 
was increased until the specimens fractured at which 
time the maximum fracture load was recorded.

The flexural strengths of each specimen were 
calculated using the following formula: S=3WL/2bd2, 
where S is the flexural strength (in MPa), W is the 
maximum fracture load (in Newtons), L is the distance 
between the supports (50 mm), b is the specimen width 
(10 mm), and d is the specimen thickness (2.5 mm).

The Vickers hardness test was employed to 
measure surface hardness by using an indenter point 
in the shape of a square-based pyramid. The test was 
performed using a microhardness tester (HV-1000B, 
TMTeck Manufacturing Limited, Beijing, China) with 
an applied load of 2.942 N at a 15-s dwell time at room 
temperature. For each specimen, three Vickers hardness 
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Table 3	 Mean (SD) flexural strengths (MPa) of denture base materials polymerized different cycles

Polymerization cycles
Denture base materials

Meliodent Paladent

A

B

C

D

E

F

G

H

I

J

105.99 (7.67)ab,A

112.18 (17.05)ab,A

95.96 (12.77)b,A

127.75 (14.42)a,A

58.19 (11.03)c,A

126.75 (18.15)a,A

128.60 (15.57)a,A

110.96 (15.41)ab,A

90.58 (16.55)b,A

126.68 (15.29)a,A

84.19 (15.28)a,B

103.41 (14.10)abc,A

93.84 (14.66)ab,A

108.38 (17.10)bc,B

56.89 (5.90)d,A

112.49 (17.36)bc,A

109.54 (5.60)bc,B

124.09 (18.89)c,A

115.34 (15.48)bc,B

100.14 (11.39)ab,B

A: 9 h at 74°C; B: 9 h at 74°C and then 100°C boiling water for 3 h; C: 9 h at 74°C and then 100°C boiling water for 30 min; 
D: 3 h at 74°C and then 100°C boiling water for 1 h; E: 90 min at 74°C; F: 90 min at 74°C and then 100°C boiling water for 
30 min; G: 30 min at 74°C and then 100°C boiling water for 30 min; H: 100°C boiling water for 3 h; I: 100°C boiling water for 
1 h; J: 100°C boiling water for 30 min.
Vertically, significant difference between means are characterized by different lowercase letters; horizontally, significant 
difference between means are characterized by different uppercase letters.

indentations were made at different points along the 
specimen. The mean hardness was calculated and used 
for the statistical analysis.

Data from flexural strengths and microhardness 
were analyzed using one-way analysis of variance 
(ANOVA) and Tukey’s HSD test with a confidence level 
of 0.05 to determine the mean differences. Student t-test 
was used to compare differences between polymerization 
cycles for Meliodent and Paladent (α=0.05). These 
analyses were performed with SPSS statistical software 
(SPSS v16.0, SPSS, Chicago, IL, USA).

RESULTS

The mean and standard deviation of the flexural 
strengths for each of the experimental groups are 
presented in Table 3. The flexural strengths for the 
polymerization cycle in the Meliodent group can be 
arranged as G>D>F>J>B>H>A>C>I>E. The specimens 
that were polymerized with the E cycle were significantly 
lower in flexural strengths than those of other cycles 
(p<0.05). No significant differences were noted among 
those polymerized with the I, C, A, H, and B; or the A, 
H, B, J, F, D, and G cycles (p>0.05). Hovewer, the I and 
C cycles had significantly lower flexural strengths than 
those of the J, F, D, and G cycles (p<0.05).

The flexural strengths for the polymerization 
cycle in the Paladent group can be arranged as 
H>I>F>G>D>B>J>C>A>E. The specimens that were 
polymerized with the E cycle were significantly lower 
in flexural strengths than those of other cycles (p<0.05). 
No significant differences were noted among those 

polymerized with the H, I, F, G, D, and B; the I, F, G, 
D, B, J, and C; or the B, J, C, and A cycles (p>0.05). 
Hovewer, the H cycle had significantly higher flexural 
strengths than those of J, C, A, and E cycles (p<0.05).

The Meliodent specimens that were polymerized with 
A, D, G, and J cycles had significantly higher flexural 
strengths than those of the Paladent specimens (p<0.05). 
The Meliodent specimens that were polymerized I cycle 
had significantly lower flexural strengths than those of 
the Paladent specimens (p<0.05).

The mean and standard deviation of the 
microhardness for each of the experimental groups 
are presented in Table 4. The microhardness for 
polymerization cycle in the Meliodent group can be 
arranged as C>H>B>I>G>D>F>J>A>E. The specimens 
polymerized with the A and E cycles had significantly 
lower microhardness than those polymerized with 
the other cycles (p<0.05) and a significant difference 
was found between the A and E cycles (p<0.05). The  
specimens polymerized with the C cycle had significantly 
higher microhardness than those polymerized with the 
other cycles (p<0.05), except for the H, B, and I cycles 
(p>0.05). In addition, no significant differences were 
noted among the specimens polymerized with the H, B, 
I, G, D, and F; and G, D, F, and J cycles (p>0.05).

The microhardness for polymerization cycle in the  
Paladent group can be arranged as 
C>I>B>D>H>F>G>J>A>E. The specimens polymerized 
with the A and E cycles had significantly lower 
microhardness than those polymerized with the other 
cycles (p<0.05) and a significant difference was found 
between the A and E cycles (p<0.05). The specimens 

170 Dent Mater J 2017; 36(2): 168–173



Table 4	 Mean (SD) microhardness (HV) of denture base materials polymerized different cycles

Polymerization cycles
Denture base materials

Meliodent Paladent

A

B

C

D

E

F

G

H

I

J

21.53 (3.97)a,A

29.33 (0.82)cd,A

31.99 (1.16)d,A

27.48 (1.01)bc,A

7.92 (0.80)e,A

26.51 (1.99)bc,A

28.03 (2.08)bc,A

29.43 (2.05)cd,A

29.13 (0.83)cd,A

25.81 (1.00)b,A

24.25 (2.76)a,A

30.17 (1.19)cd,A

30.89 (1.95)d,A

29.03 (1.12)bcd,B

10.14 (1.10)e,B

27.33 (1.02)b,A

27.14 (0.87)b,A

27.90 (0.97)bc,A

30.58 (1.71)d,A

27.04 (1.34)b,A

A: 9 h at 74°C; B: 9 h at 74°C and then 100°C boiling water for 3 h; C: 9 h at 74°C and then 100°C boiling water for 30 min; 
D: 3 h at 74°C and then 100°C boiling water for 1 h; E: 90 min at 74°C; F: 90 min at 74°C and then 100°C boiling water for 
30 min; G: 30 min at 74°C and then 100°C boiling water for 30 min; H: 100°C boiling water for 3 h; I: 100°C boiling water for 
1 h; J: 100°C boiling water for 30 min.
Vertically, significant difference between means are characterized by different lowercase letters; horizontally, significant 
difference between means are characterized by different uppercase letters.

polymerized with the C cycle had significantly higher 
microhardness than those polymerized with the other 
cycles (p<0.05), except for the I, B, and D cycles (p>0.05). 
In addition, no significant differences were noted among 
the specimens polymerized with the B, D, and H; and D, 
H, F, G, and J cycles (p>0.05).

The Paladent specimens that were polymerized with 
D and E cycles had significantly higher microhardness 
than those of the Meliodent specimens (p<0.05). No 
significant differences were noted between the Meliodent 
and Paladent specimens that were polymerized with A, 
B, C, F, G, H, I, and J cycles (p>0.05).

DISCUSSION

The present study evaluated the effect of different 
polymerization cycles on the flexural strengths and 
microhardness of acrylic resin denture base materials. 
The first null hypothesis was rejected because the data 
showed that the polymerization cycles significantly 
affected the flexural strengths and microhardness of 
denture base materials (p<0.05). The flexural strengths 
in the A, D, G, J, and I cycles and microhardness in the 
D and E cycles were significantly different according to 
the denture base materials (p<0.05). Thus, the second 
null hypothesis was partially rejected.

Seo et al.23) reported that flexural strengths of heat-
polymerized acrylic resin, when polymerized for 90 min 
at 73°C and then 100°C boiling water for 30 min (short 
cycle), were higher than when it was polymerized for 9 h 
at 71ºC (long cycle). This finding is in accordance with the 
present study in which the specimens polymerized with 

the F cycle (90 min at 74°C and then 100°C boiling water 
for 30 min) had higher flexural strengths than with the 
A cycle (9 h at 74°C). The physico-mechanical properties 
of polymers are determined by the molecular weight of 
the mer (unpolymerized molecule) and by the residual 
monomer levels, degree of chain branching, polymer 
chain length, cross-linking and cross-link density within 
the molecule, and the presence of plasticizers and/or 
fillers. Plasticizers are added to produce a softer, more 
resilient polymer and to lower the glass-transition 
temperature (Tg) of the polymer, so a material that is 
normally rigid at a particular temperature may become 
more flexible. The Tg is the temperature at which 
a resin ceases to be glassy and brittle and becomes 
rubberlike16,24). In addition, Azzarri et al.25) reported 
that the residual monomers act as plasticizers which 
reduce the polymer interchain forces; thus, this affects 
the physico-mechanical properties and biocompatibility 
of the acrylic resins. However, Urban et al.26) reported 
that the residual monomer content of heat-polymerized 
acrylic resin, when polymerized for 9 h at 73ºC, was 
higher than that of acrylic resin polymerized for 90 min 
at 73ºC and then boiling water for 30 min because of the 
relatively low polymerization temperature, which was 
below Tg. Therefore, it is likely that the monomer had 
a poorer ability to polymerize due to lower molecular 
chain motions and immobilization of the monomer in the 
glassy polymer. Consequently, the differences among 
polymerization cycles of denture base materials may be 
explained by the increase of polymerization temperature. 
This increased may be caused enhanced the degree of 
conversion of monomer to polymer resulting in a lower 
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level of residual monomer and increased Tg.
The Meliodent specimens polymerized with G cycle 

exhibited the highest flexural strengths, while the 
Paladent specimens polymerized with H cycle exhibited 
the highest flexural strengths. In addition, the flexural 
strengths were significantly different between Meliodent 
and Paladent specimens polymerized with A, D, G, I, and 
J (p<0.05). Pure polymers, such as PMMA, are clear and 
are adaptable to a wide range of pigmentation. Colorants 
are added to obtain the various tissue-like shades, and 
zinc or titanium oxides are used as opacifiers12). Thus, it 
may be that the differences between the denture base 
materials are probably due to the colorants or opacifiers. 
According to International Standards Organization (ISO) 
Specification number 20795-1, the required flexural 
strength for the heat-polymerized acrylic resin denture 
base materials should be not less than 65 MPa27). In the 
present study, the denture base materials polymerized 
with different cycles had flexural strengths greater than 
65 MPa, except with the E cycle.

Seo et al.23) noted that no significant difference 
was found between the heat-polymerized acrylic resin 
specimens polymerized with short or long cycles for 
microhardness (p>0.05). In contrast, in the present 
study, the microhardness for specimens polymerized 
with the F cycle were significantly higher than those 
polymerized with the A cycle (p<0.05). These differences 
may be due to variation of time and temperature during 
polymerization which can affect the residual monomer 
content of the specimens. The residual monomer 
content in the polymerized acrylic resin can be decrease 
by diffusion into water and the leaching of residual 
monomer is a temperature-dependent process, thus 
increasing the temperature enhances the diffusion. In 
addition, the residual monomer content reduces due to 
additional polymerization at the sites of active radicals, 
and at higher temperatures, monomer molecules should 
diffuse more rapidly to these active sites and the residual 
monomer content should decrease. Another factor that 
affect the residual monomer content is its hydrolysis to 
methacrylic acid15,26).

Ayaz et al.15) investigated microhardness of three 
different heat-polymerized acrylic resins (Meliodent, 
Paladent and QC) polymerized with conventional water 
bath (100°C boiling water for 30 min) and autoclave 
techniques. They demonsrated that QC had significantly 
higher microhardness than Meliodent and Paladent, 
and no significant differences were noted between 
Meliodent and Paladent for the conventional water bath 
polymerization. These results are in accordance with 
the present study in which no significant difference was 
found between the Meliodent and Paladent specimens 
polymerized with J cycle (100°C boiling water for 
30 min) for microhardness (p>0.05). In addition, the 
microhardness were significantly different between 
Meliodent and Paladent specimens polymerized with 
D and E cycles (p<0.05). This result may be due to the 
colorants or opacifiers as discussed previously.

In the present study, the most efficient cycle 
was different between the flexural strengths and 

microhardness. Nunes de Mello et al.28) reported that 
an additional microwave or water bath polymerization 
caused higher internal microhardness at greater 
specimen depths. Therefore, this difference may be that 
the polymerization was more effective in the interior of 
the specimen than in the superficial layers.

The present investigation had a number of  
limitations. Only two denture base materials were 
tested. The use of rectangular specimens instead of more 
complex denture shapes and the in vitro nature of this 
investigation may not account for changes inherent in 
the materials after long periods of use under oral fluid 
conditions. Further in vitro studies and clinical research 
are necessary to investigate the different physico-
mechanical properties of the denture base materials 
over a longer usage period of the dental prosthesis.

CONCLUSIONS

Within the limitations of the present investigation, the 
following conclusions were drawn:

1.	 The flexural strengths and microhardness of 
denture base materials varied depending on the 
polymerization cycles.

2.	 The G cycle was the most effective polymerization 
cycle in the Meliodent group in terms of the 
flexural strengths, while the H cycle was the most 
effective in the Paladent group.

3.	 The specimens polymerized with the C cycle had 
the highest microhardness in the Meliodent and 
Paladent groups, although this cycle was not 
better than the G and H cycles in terms of the 
flexural strengths.

4.	 The denture base materials that were polymerized 
with short and long cycles at 74°C did not have 
enough flexural strengths and microhardness. 
Therefore, they need to be polymerized at 100°C 
for at least 30 min.
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