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Abstract: In this paper we explore a random process generated by the incomplete Gauss sums and establish an analogue
of weak invariance principle for these sums. We focus our attention exclusively on a generalization of the limit distribution

of the long incomplete Gauss sums given by the family of periodic functions analyzed by the author and Marklof.
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1. Introduction

In the present paper we deal with the curves

0,1 — C

to Xy(t) = X eg0h?) + (gt = [at))eq (0], .

where ¢ € N, p € ZX = {p < ¢| ged(p,q) = 1}, and ey(x) = e*™*/49. We consider p random uniformly
distributed in Z; N ¢D for some fixed D C T with boundary of measure zero. It is more convenient to

normalize the above curves by considering instead the map {t — j\f“((?)} Our main aim is in this article to
q

study the ensemble of these curves obtained by the incomplete Gauss sums as ¢ — oo. The last term is added
to make X, (t) a continuous curve. When ¢ = 1, this sum corresponds to the classical Gauss sum X, (1).

This study extends the author and Marklof’s [2] work on the value distribution of long incomplete Gauss
sums. The above-mentioned work is later extended to the short interval case of incomplete Gauss sums by the
author [3]. The classical examples of incomplete Gauss sums were also studied in the literature for many others
[5, 9, 12, 13, 14]. For the higher power case, see [4, 11].

Cellarosi [1] has studied the analogous setting for theta sums Sy (x) = Ef]:\q e(rh?) with z uniformly

distributed with respect to Lebesgue measure, generalizing the limit theorems for theta sums investigated by
Marklof [10] and earlier by Jurkat and van Horne [0, 7, 8]. Cellarosi’s proof relies on a renormalization procedure
established by means of continued fraction expansion of x and renewal-type limit theorem for the denominators
of continued fraction expansion of x.

We investigate a random process generated by the values of the normalized Gauss sums X, (t). We will

prove a limit law for finite-dimensional distributions of such sums as ¢ — oco. To describe the limit process let
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us define
Fw=y 12
and
Jt)=t+T* (1), (1.3)
J(t)=t+ %J*(t), (1.4)
T () = 57°() (15)

Our main result in the paper is the following theorem. We define the following random variables. The
random variable X takes the values £1 +1i with equal probability and the random variable Y takes the values
+1 with equal probability. Z takes the values 1 +1i with equal probability.

We define ¢, =1 if a =1mod 4, and ¢, =1 if a = 3 mod 4.

The symbol L, here denotes convergence with respect to finite-dimensional distributions. See Remark

1.1 for explanation.

Theorem 1 For each ¢ € N with a bounded number of divisors and t € [0,1] as ¢ — oo we have

q is not @ square q is @ square
¢=0mod 4 (Xf/(;), 2(?)) Dy (X, 7 (1)) (Xj/(;), ;ﬁq‘?g; Dy (2,7(1))
¢=1mod?2 (2‘1\(/1; jgz((?)) 2y (v, 7(t) iq% D, 7t)

¢/2 is not a square a/2 is a square
¢ =2mod 4 (eqf%, 22&?)) N % a0

Remark 1.1 The random process

1

Xq(tl)
Far D) F(qu““

Xq(t)
Xq(1)

"X, (1
PEZX NgD a(1)

for every bounded continuous function F :CF — R.

We plot the function J*(t) = Znezﬂ

e(nz+nt)
2min

how the random process generated by X;(t) looks.

We now examine the vector-valued incomplete Gauss sum

Xq(tk) * *
>_>/TF(J (t1),...,T*(ty)) dx

converges in finite dimensional distribution to the process J*(t) if

(1.6)

for different values of z, see Figures 1 and 2, to show

q—1 h
(pq) = = ) eq(ph?®), (L.7)
9o D, 4 }; 4P(q> p

,or(x)) with k € Z is a periodic function with period one.

where ¢ () = (¢1(2),. ..
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ROEE

Figure 1. The plot shows the process given by the function J*(t) for = v/2, t uniformly over the period [0,1], and
truncated at n = 20000.

V5+1
2

Figure 2. The plots illustrate the same as Figure 1; however, this time for x = 7 on the left and for « = (golden

ratio) on the right.

We define the Fourier series of ¢ with the sum ) _, @, e(nz) with Fourier coefficient ¢, . Random

variables are given by the limiting distribution of the incomplete Gauss sum

Gole) =Y @ elon?), (18)

neZ
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Gh(@) = 3 @on elan?), (1.9)
nez

Go@) = 3 @, clan?), (1.10)
n€e2Z+1

with z uniformly distributed on T. For our application to the joint distribution of incomplete Gauss sums in

(1.1) at different t1,...,tx, when ¢ is a characteristic function we then have

pi(x) = X0 (z +n). (1.11)
nez

The Fourier coefficient ¢,, is therefore calculated as

@anfﬂmdﬂme

= / Z X(0,t,](x +n) e(—nx)dx

neZ

(1.12)
ti .
_ / 67277171;1: dx
0
B [1 _ e—27rinti]
2min
The theorem below is a generalization of Theorem 1 in [2]. We will take the differentiable weight function
@ = (1,...,¢k) in the space of
B(T) ={¢ : Y K¢yl < oo}, (1.13)
kEZ

so that G, are differentiable and continuous.

The Jacobi symbol is defined for odd integers b by

+1 if b{a and ais a quadratic residue
a
(g) ={0 ifbla (1.14)
—1 ifbta and a is a quadratic nonresidue.

This is an extension of Legendre’s symbol to arbitrary odd integers b multiplicatively.

Remark that the classical Gauss sum g1(p,q) = 32, 1o 4 €4 (ph?) can be evaluated in terms of Jacobi

symbol
(1+i)6;1(%)\/(j if ¢ =0 mod 4
g1(p,q) = eq(B) VA if ¢ =1 mod 2 (1.15)
0 if ¢ =2 mod 4,

and corresponds to x,(1) in our case.

Theorem 2 Fix a k€ Z and 0 <ty <...<tp <1. Fiz a subset D C T with boundary of measure zero and
let each ¢; € B(T). For each q € N choose p € Zy N gD at random with uniform probability. Then as q — oo

along an appropriate subsequence as specified below, for any bounded continuous function F : C*¥ — R we have

530



DEMIRCI AKARSU/Turk J Math

(i) If g =0mod 4 is not a square, for every o € {£1 £i} then

1 b) K
#(Z5 N ¢D) > F <?11(§f qq)) T ggik(g) qq)) >
a pEZ;< NgD ’ ’

91(p,))=q0

%EAF@;@VWG;@M$

(i) If ¢ =1 mod 2 is not a square, for every o € {£1} then

1
sy D D (ggilg’qq)) e g;kéopf)))
q pEZ;< NgD ’ ’
91(p,9))=¢q V/q O

%%AF@%@PWG%@Mw

(i1i) If ¢ =2 mod 4 and q/2 is not a square, for every o € {£1} then

X1 > F(gwl(p,q)’___7gwk(p,Q)>
#(Zq N qD) - 291(p, q) 291(p, q)
pEZq ngD

91(p,9)=¢€q/24/ /20

%%AF@;@PMG@@M$

(iv) If ¢ =0mod 4 is a square, for every o € {1 +1i} then

1 91 (D, Q) 9o (P, Q) )
#(Z5 N D) pezxz;qp F( a@q) 7 aq)

91(P,9)=+v/q0

1
%ZAF@L@VWG;@MW

(v) If ¢ =1mod 2 is a square, then

1 9o, (P, Q) Jor (1)
#(Zq N¢D) 2 F( Gva T €A )

pEZ;( NgD

%%AF@%@,WG%@Mx

(vi) If ¢ =2mod 4 and q/2 is a square, then

1 9or (0, Q) 9er (P, Q) >
#(Zy N qD) 2 (eq/z\/%’ " €q/2v/2q

pEZ;< NgD

1

=3 /E F(G,, (2),...,G, (7))dz.

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)
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We are able to extend the statements of Theorem 2 to the Riemann integrable case, with the condition

that ¢ has a bounded number of divisors. In order to do this we need to estimate mean square

Moo (@)= —— 3 g0l (1.22)

D
9(q) [P PEZy NgD

where ¢ = (¢1,...,9%).

Theorem 3 Fixa k €Z and 0 <ty <...<tp <1. Fiz a subset D C T with boundary of measure zero and
let each p; be Riemann integrable. Theorem 2 holds for any sequence of ¢ — oo as long as q has a bounded

number of divisors.
Note that this is an extension of Theorem 2 in the paper [2].
2. Proof of Theorem 2

Before going through the proof of the theorem we need to state two theorems from [2], which are used in the

proof.

Theorem 4 (Demirci Akarsu-Marklof [2]) For each ¢; € B(T),

gl(paQ)GL(—g) if ¢ =0 mod 4
9o. (P, q) = § 91(p, Q) Gy (— L) if g=1mod 2 (2.1)
201(2p,/2) Gy, (— ) if ¢=2mod 4.

In the first and second case, T denotes the inverse of x mod q, in the third the inverse mod q/2.

The order of Z; is denoted by Euler’s totient function ¢(q).

Theorem 5 (Demirci Akarsu-Marklof [2]) Let f € C(T?). Then the following convergence holds uniformly

int€Zy; as q—00:
(i) For any sequence of q,

1 p tp
5@ > f(q,q) — 5 f(x)da. (2.2)

pEZY
(i) If ¢ =0 mod 4 is not a square then, for every o € {+1, +i},
1 p tp 1
— f(, ) — = f(x)dz. 2.3
?(q) pEZZ:X q q 4 Jpo (=) (23)

EP(%):U

(i1i) If ¢ =0 mod 4 then, for every o € {+1},

@ 3 f(i,?)a; [ rayaa. (2.4)

pELY
p=o0 mod 4
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(iv) If ¢ =1 mod 2 is not a square then, for every o € {£1},

@ 3 f(p,tp> 4% [ twyaa. (2.5)

a q
PELY

(2)=0

Proof
Case (i): ¢ = 0 mod 4, not a square. We need to show that for any bounded continuous F : C* — R

we have

@ T XD(I(;)F(gwl(p,q) g@k(p,q)>

‘ gi(p,a) " 91(pyq)
pGZq
Gp(%):a (26)

o f'AF(Ggl(x),...,G;k(x))dx.

By Theorem 4 (i), (2.6) equals

5 5 s (Den(-)

X
PEZ,

GP(%):U (27)
N / F(G* (2),....G* (2))da
o | FGL @, Gl @)

If we choose the test function
flay,22) = Xp(xl)F(G:;l (—z2),..., G;k(—xg)), (2.8)

the proof then uses the approximation argument in which xp is approximated by a continuous function (see
Remark 5 in [2] for more details). As G

IR
of Theorem 5.

Case (ii): ¢ =1 mod 2 and not a square. We in this case have

1 P\ o f 90 (P 0) 9or (P 9)
¢(q) pEZZ:X XD<q)F< 91(p,a) 7 91(py9) )
(2)=o (2.9)

ey sz and F are continuous, the result then follows by Case (ii)

-0 RGOSR

In view of Theorem 4 (ii), this statement reduces to

o el (D)oo (- 9)

pGZ?
(B)=0o (2.10)

— 12)|‘/H‘F(G¢1($),,Ggpk(l'))d$
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We conclude this by Theorem 5 (iv).
Case (iii): ¢ =2 mod 4, ¢/2 is not a square. Following the same strategy as above, we deduce that the

claim of the theorem is equivalent to

& 5 ol 5)en(®)
()= (2.11)

R |2D|AF(G¢1(I),...,G¢k(x))dx.

We substitute ¢ = 2¢p and p = 2pg + qo, i.e., g0 = ¢/2 and py = i(2p —¢q). Hence (2.11) is equivalent

: R CACE S ECACE )
— Do \plas (=20, o (-2
?(q) ZX XD(QO 2 o 90 ox o
pEZqO
(22)=¢ (2.12)

0
IDI
@1 (;¢k(x))dx’

to

which then follows by Theorem 5 (iv).
Case (iv): ¢ =0 mod 4, is a square. We use the same process as in Case (i), and note that the condition
€, =1 (e, =1) is equivalent to p = 1mod 4 (p = —1 mod 4). The statement follows from Theorem 5 (iii).
Case (v): ¢ =1 mod 2, a square. Analogous to Case (ii), but this time we employ Theorem 5 (i).

Case (vi): ¢ =2mod 4, ¢/2 is a square. This is analogous to Case (iii), except that we use Theorem 5

(i)-

3. Proof of Theorem 3
The lemma below is the key tool to be used in the proof of Theorem 3 for Riemann integrable weight ¢ . We

estimate the second moment of My ,(q) (recall Equation (1.22)).

Lemma 1 Fiz a positive integer N . Then there exists a constant Cny > 0 such that any subsequences of

q — oo as long as q has a bounded number of divisors, for Riemann integrable function ¢ , we have

M
lim sup 2o ) (a)
q—o0

CN 2
< — 1
d(q)<N

where [|@ll3 = llo1ll3 + - .. + loxl3-
Proof [Proof of Lemma 1] We have

(3.2)

Z (196, (2, @) + - + |96 (2, @) [*).

pELY

q
= Dlo(a)
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By Lemma 1 in [2] we simply get

M. C
limsup 22e(D) Oy o (3.3)
q—00 q D
d(q)<N

In the below lemma, we use the tightness argument, which is as follows: the sequence probability measures
defined by the value distribution of incomplete Gauss sums is tight. Following the Helly-Prokhorov theorem,
this means that every sequence contains a convergent subsequence. In other words, the sequence is relatively
compact.

Lemma 2 Let ¢ be a Riemann integrable function. Then, for every € > 0, 6 > 0 there exists a smooth

function 1 such that for the subsequence of q specified in Lemma 1,

. 1 _
lim sup Wq)Hp €ZX :qa?ge(p,q) — 94 (0, 0)|| > 6} <e. (3.4)
d(q)<N
Proof
By Chebyshev’s inequality we have
. 1 _ Ms, 4 (q)
lim sup —— ZY g Y2 5} <« =22 3.5
l;gbogp ¢(q)|{p€ q q H(gipl(p7Q)a 7gtpk<paQ))|| > }| < 52(] ( )
d(g)<N
By Lemma 1, there exists R, > 0 such that
. 1 _
llggsgp@!{p €Zy :a?1(9e1 (9, 0)s -+ 9or (0, D))l > Re}| < € |l ]l3- (3.6)
d(q)<N

Since

(91 (P @5 -+ -3 9o (P, D) — (9 (P5 Q)5 - - -, G (P, @)

= (gtﬂl—lh (pv Q)v s Gop—iy (p’ q)) (3'7)

and each ¢ —Y1,..., 9 — ¥ is Riemann integrable, we get
lim sup L’{p erL;:
g0 (q) !
d(q)<N
_ M3, -y (q)
0 21(96: (01 ) = 96 (,9))5 -+ (9or () = o (: @))I| > 63| < :;’27;. (3.8)
We then have via (3.7)
: 1 X —-1/2
litn sup @!{p €Zy a2 (9o (P, @)s -+ Gor—un (0 D) || > 5}
d(q)<N
My Lp—’l,b(Q)
—=F 2 (3.9
T (3.9)
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The proof then follows by Equations (3.5) and (3.6). O

Proof [The proof of Theorem 3]

We only go through the case ¢ = 0 mod 4; the other cases are similar.

Lemma 2 tells us that any sequence of ¢ — oo with d(q) < N contains a subsequence {g;} with the
property: there is a probability measure v (depending on the sequence chosen, ¢ and D) on {1 +i} x C
such that for any o € {#1 4 i} and any bounded continuous function F: C¥ — R we have

: 1 9or(0:45) 9 ,(p,q-)> /
lim ———— F| 2 i .. 2k ) = | F(2)vy,(o,dz). 3.10
j—oo |D] $(g5) Z ( g1(p,q) g1(p; q) c B)ve(o:dz) (3.10)
pEZqJﬁqu
ep(%):‘f
We claim that for every F € C5°(CF)
: 9or (P, 0) ggak (p.q ) /
lim F sy F(z2)vy,(o,dz 3.11
d‘(ﬁ‘” D[ ¢(q) |¢( ) Z (gl(p, q) 91(p,q olod?) (3.11)
q)<N pEZY NgD
ep(%)zo

holds and it thus implies that v is unique and the full sequence of ¢ converges.

To prove the existence of limit (3.11), notice that since F € C(C*) we have |F(w) — F(z)| <

C'min{1, ||w — z||} for some constant C' > 0. Therefore, we have

1 9o (P, 9) 9er, (P, q)) B <9w1 (p.q) 9ur (P, q))’
D] ¢(q) peg;qp F( a9’ 9ilp,q) F 9ma)’ 7 alp9)
GP(%):U

C . 91 (P, ) Jor (P, Q)) 3 (gwl(p, q) gwk (p,q >H}

= D] ¢( )pE%QDmln{l’ (m(p,q) T aup,q) a7 ailpig
ep(%):‘f

C . 9. (P, Q) g%(p,q)) B (gwl(p, q) g% (p,q )H} (3.12)

: D é(q) EZ:X mm{l’ (91(p7Q) T ai(p.g) 9p,q) " gilpyg

c . 91— (D, 9) G wk p, H}
min ¢ 1, ey
|D|¢( ) ZZ: { 91(p,q) g1(p.q
c 1/2
|D| (2720 +¢).

The sequence

. 1 9y (D, q) G, (P, Q)>
lim ——— F 2 A 3.13
a—o0 |D| ¢(q) Z (gl(p, q) 91(p,q) (3.13)
pEZq NgD
ep(%)zo
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defines a Cauchy sequence, as (3.11) is satisfied for the smooth function ¥ by Theorem 2. By the upper bound
(3.12), the triangle inequality and the fact that (3.13) is a Cauchy sequence, it is now observed that the sequence

oy L 3 F(Qg;l(p,q) ggak(p,q)) (3.14)

o D , 9 b ,
00 | |¢(q)pEZ;an 91(p,q) 91(p, q)

51)(%):‘7

is also a Cauchy sequence; therefore the claim is proved. We have thus shown that v, is unique and the full
sequence of ¢ converges for every bounded continuous F'.
Since 9 converges to ¢, (3.13) —(3.14) holds by the bound (3.12). This concludes the proof of Theorem

3 for the Riemann integrable case. O

The proof of Theorem 1

In particular, if we take ¢ = (X(0,41]»- - -» X(0,ts)) @bove, it proves Theorem 1.
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