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Glycan structures are common posttranslational modifications of proteins,

which serve multiple important structural roles (for instance in protein

folding), but also are crucial participants in cell–cell communications and

in the regulation of immune responses. Through the interaction with
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glycan-binding receptors, glycans are able to affect the activation status of

antigen-presenting cells, leading either to induction of pro-inflammatory

responses or to suppression of immunity and instigation of immune toler-

ance. This unique feature of glycans has attracted the interest and spurred

collaborations of glyco-chemists and glyco-immunologists to develop gly-

can-based tools as potential therapeutic approaches in the fight against dis-

eases such as cancer and autoimmune conditions. In this review, we

highlight emerging advances in this field, and in particular, we discuss on

how glycan-modified conjugates or glycoengineered cells can be employed

as targeting devices to direct tumor antigens to lectin receptors on antigen-

presenting cells, like dendritic cells. In addition, we address how glycan-

based nanoparticles can act as delivery platforms to enhance immune

responses. Finally, we discuss some of the latest developments in glycan-

based therapies, including chimeric antigen receptor (CAR)-T cells to

achieve targeting of tumor-associated glycan-specific epitopes, as well as

the use of glycan moieties to suppress ongoing immune responses, espe-

cially in the context of autoimmunity.

Introduction

Glycosylation is the most abundant posttranslational

modification occurring in mammalian cells and it is

markedly changed under pathological conditions, such

as cancer and autoimmune diseases [1–6]. Glycans

cover all key immune-related molecules, such as the

major histocompatibility complex (MHC) molecules

and the T-cell receptor, indicating that alterations in

cell surface glycosylation can directly affect immune

cell function. In addition, immune cells express a wide

variety of carbohydrate-binding receptors, including

members of the C-type lectin receptor, Siglec (sialic

acid-binding immunoglobulin-type lectin), and galectin

families. These receptors decode glycan patterns on

host cells, but also on pathogens and are involved in

the activation and dampening of immune responses

[7]. Strikingly, many immune-related diseases have

been linked to altered glycan profiles [8,9]. One clear

example includes the altered IgG glycosylation

observed in the antigen-binding Fab part of the

anticitrullinated protein antibodies (ACPA) in rheuma-

toid arthritis [10], although the cause or the role of

this glycosylation is not yet known. In cancer, major

glycosylation-related changes occur, including the

heightened expression of truncated O-glycans,

branched N-glycans, diverse fucosylated and sialylated

terminal structures, and alterations in glycosaminogly-

cans and glycosphingolipids [4,11,12]. Glycans play a

critical role in tumor biology, interfering with cell

adhesion molecules, modulating receptor tyrosine

kinase activation, and evasion of the antitumor

immune response through the interaction with lectin

receptors on immune cells [11,13]. Nevertheless, glycan

binding by lectin receptors on immune cells can be

exploited for immunotherapy and via glycan-based

therapeutics to improve or correct immunity in cancer,

infection, and autoimmunity [14].

Efficient immunity requires not only the proper initi-

ation of responsiveness to harmful infectious agents

and malignant cells, but also must instill tolerance to

commensal species as well as to innocuous antigens to

thereby prevent the development of allergy. If immune

reactions proceed unabated after the pathogen has

been successfully cleared, patients can develop autoim-

munity, resulting in the attack of healthy tissues by

the body’s own immune system. In this review, we will

discuss the latest developments on the use of glycan-

based tools as a therapeutical approach to activate

immune responses in cancer. We will particularly focus
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on dendritic cells, as these are the most professional

antigen-presenting cells and are master regulators of

our immune system. Moreover, we will highlight novel

advancements in the field of antiglycan CAR-T cells

and the use of glycans to dampen immune responses

in autoimmunity.

Opportunities and challenges of
immunotherapy

In recent years, a number of ‘switches’ that can turn

the immune system on or off have been intensively

studied and many advances have been made in the field

[15–18]. For example, the discovery of immune check-

points in the battle against cancer has revealed specific

immunosuppressive signaling pathways, such as the

interaction between programmed death (PD)-1 receptor

and its ligand PD-L1 or the inhibitory cytotoxic T-lym-

phocyte-associated protein 4 (CTLA-4) binding costim-

ulatory molecules on antigen-presenting cells [19]. The

biological importance of these switches is clearly

reflected in the successful clinical application of drugs

blocking the above-mentioned pathways, which over-

come immunosuppression by certain tumors, resulting

in improved overall survival of patients [20,21]. In con-

trast, the use of classical immunosuppressants, such as

glucocorticoids and others, is very frequently associated

with excessive general suppression and risk of life-

threatening infections [22].

The design of novel immunomodulatory approaches

must therefore be aimed at increased specificity and

efficacy [23], by targeting specific cells or molecular

pathways to reduce side effects of treatment by regu-

lating only selected processes. However, before clinical

application, several factors for predicting the final

immunological outcomes must be considered, including

potential target cells and their function, biochemical

pathways involved, amplification of induced changes

by positive feedback loops, negative feedback or regu-

latory mechanisms, and summation of exerted effects.

Plasticity of dendritic cells in controlling innate

and adaptive immune responses

Dendritic cells (DCs) are the most superior antigen-

presenting cells of our immune system and as such the

master regulators of both immunity and tolerance

(Fig. 1) [24]. Seeded in virtually all tissues as immature

DCs, these cells patrol their surroundings for incoming

pathogens or signs of tissue damage. To achieve this

task, DCs are equipped with an array of pattern recog-

nition receptors (PRRs), including Toll-like receptors

(TLRs), nucleotide-binding oligomerization domain

(NOD)-like receptors (NLRs), retinoic acid-inducible

gene I (RIG-I)-like receptors (RLRs), and C-type lec-

tin receptors. These receptors are specific for conserved

microbial structures, called pathogen-associated molec-

ular patterns (PAMPs), but can also recognize danger-

associated molecular patterns (DAMPs), molecules

released from necrotic tissue [25]. Based on their abil-

ity to dampen immune responses, glycans have been

proposed to act as self-associated molecular patterns

or SAMPs [26]. Nevertheless, also pathogen-exposed

glycans can bind the glycan-binding C-type lectins and

thus participate in the inflammatory response toward

the pathogens.

After triggering of PRRs by PAMPs or DAMPs, DCs

undergo drastic biological changes, termed maturation,

which result in extensive expression of costimulatory

molecules, production of various pro-inflammatory bio-

molecules (cytokines), and migration to secondary

lymph nodes. Importantly, depending on the type of

maturation signals, DCs can greatly adjust the amount

and type of cytokines or costimulatory molecules they

express and can also express inhibitory molecules and

anti-inflammatory cytokines, leading to tolerance induc-

tion (Fig. 1) [27]. The abundance of various receptors

that regulate efficient DC responsiveness is reflected in

the fine-tuning of DC activation, which depends on the

type of PAMPs and consequent binding of various

PRRs or their combinations, resulting in different ‘fla-

vors’ of the DC activation state capable of inducing dif-

ferent classes of immune responses [27]. One well-

known example is the simultaneous activation of TLRs

and C-type lectin DC-SIGN by mannose-containing

PAMPs [28,29], which, for example, are carried by HIV-

1 [30]. By concomitant DC-SIGN activation, HIV can

dampen TLR-induced DC maturation, resulting in

increased production of the immunosuppressive inter-

leukin (IL)-10 [31]. This outstanding functional plastic-

ity extends well beyond activation of various effector

subsets such as Th1-, Th2-, or Th17-type effector T cells

[32], but can also lead to immune tolerance by induction

of regulatory T cells (Tregs) [33]. It is worth noting that

while pathogens directly stimulate DCs, they can also

stimulate other immune cells (NK cells, Tregs, etc.) and

tissue cells, which can in turn also influence DC activa-

tion and the immunological outcome.

With possibly few exceptions, almost all immune cell

subsets are subjected to functional plasticity, which is

greatly dependent on their microenvironment, cell-to-

cell interactions as well as several other factors. A text-

book example is the activation and polarization of

naive T cells upon antigen encounter, which can give

rise to the development of either Th1, Th2, Th17, and

other effector subtypes or even to induction of various
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regulatory T-cell subsets (Fig. 1) [34–36]. Perhaps the

greatest functional plasticity belongs to DCs that play

a major role in shaping the adaptive immune responses

and are central to optimal and successful vaccination

outcomes. The immunogenic vs. tolerogenic effect of

DCs is largely dependent on their activation state.

Indeed, strong immunogens, such as TLR ligands (ag-

onists), as well as certain pro-inflammatory cytokines,

can be considered strong primers of DC maturation,

their migration to secondary lymph nodes, and there-

after their induction of various T-cell effectors. How-

ever, there are known examples where DCs do not

reach their full maturation, leading to a so-called

‘semi-mature’ state, favoring the induction of tolerance

over immunity [37]. Semi-maturation entails similar

expression profiles of costimulatory molecules;

however, such cells lack other signals necessary for the

induction of immune responses, namely appropriate

cytokine production crucial for T-cell polarization.

Inadequate maturation can occur for example by cer-

tain microbes and their components, for example, lac-

tobacilli from the gut flora [38], or by maturation

induced by tumor necrosis factor (TNF)-a alone [39]

or importantly, TLR ligands at suboptimal concentra-

tions [40]. In such instances, semi-matured DCs favor

the induction of Th2 or regulatory T-cell responses.

DC maturation can also be thwarted by immunosup-

pressive components present in their microenviron-

ment. Most likely, increased presence of certain

endogenous or exogenous immunosuppressants, such

as corticosteroids (e.g., dexamethasone) or the active

metabolite of vitamin D3 (vit D3), can greatly inhibit

Fig. 1. Innate immunity and glycans play a key role in immune responses and homeostasis. Antigen-presenting cells (APCs), such as

dendritic cells and macrophages, recognize pathogens using PAMPs and DAMPs via a group of so-called pattern recognition receptors, the

most important families of these receptors being TLRs, nucleotide-binding oligomerization domain NLRs, RIG-I-like receptors (RLRs), and

C-type lectin receptors (CLRs). Glycans are often key part of these interactions as well as of the following interplay between innate

and adaptive immunity, thus fine-tuning immune responses, for example, by differential stimulation of T helper (Th) cell activation and

differentiation to individual cellular subsets, including regulatory T cells (Tregs) with varying functions.
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the DC maturation process and cause the so-called ‘al-

ternative activation’, wherein the DCs display exten-

sive expression of inhibitory, instead of costimulatory,

surface molecules and have increased production of

immunosuppressive cytokines, such as IL-10 [41,42].

The presence of such components can also be associ-

ated with a specific anatomical region like for example

the gut mucosa, where the increased presence of cer-

tain dietary components like vitamin A can favor the

induction of tolerogenic DC subsets capable of induc-

ing regulatory T cells [43].

The tight balance between immunity and tolerance

is crucial for maintaining immune homeostasis. An

exarcerbated immune reaction, without proper immune

resolving, can lead to unwanted immunity to self-tis-

sues (autoimmunity) or innocuous antigens (allergy).

In contrast, an inadequate immune response may

allow immune escape of transformed cells and the

development of cancer. In summary, both induction of

immunity and tolerance are extensively regulated and

fine-tuned by a great number of factors, which need to

be considered when attempting to manipulate the

immune system. Besides choosing the specific molecu-

lar target present on immune cells, one should pay

additional attention to the tissue environment, meeting

the criteria for optimal immune cell maturation and

take into account potential immune cell subtypes,

which could express the molecular target in question

but would respond according to their pre-determined

biology.

Targeting of lectin receptors on antigen-

presenting cells in vaccination approaches

Vaccine design has been greatly inspired by the process

of antigen delivery/presentation [44]. For successful

vaccination purposes, efficient antigen capture and pre-

sentation are a prerequisite for adequate helper and

cytotoxic T-cell responses. Most C-type lectins recog-

nize and bind glycosylated antigens, which generally

results in internalization and processing for loading

onto MHC molecules and subsequent presentation to

antigen-specific T cells. Using this rationale, C-type

lectin receptors can be targeted both in vitro and

in vivo for increased antigen delivery [45]. One of the

most studied C-type lectins is perhaps DEC-205, a C-

type lectin expressed on mouse and human DCs. In

particular, DEC-205 was successfully targeted using

tumor antigens conjugated to anti-DEC-205 mono-

clonal antibody, thereby significantly enhancing antitu-

mor immunity [46–48]. In addition, anti-DEC-205

conjugates have also been tested in immunization pro-

tocols against viruses [49]. Similar observations of

increased T-cell responses emerged in studies where

the C-type lectins, Clec9A and Clec12A, were targeted

[50–53]. Other important C-type lectins involved in

antigen presentation are the mannose receptor, den-

dritic cell-specific intercellular adhesion molecule-3-

grabbing nonintegrin (DC-SIGN), Langerin, DCIR,

and Dectin-1. While most attempts of targeting anti-

gens to C-type lectins were performed using conjugates

with monoclonal antibodies, glycan-based ligands are

a viable alternative. This approach has been widely

exploited in some studies involving Dectin-1, mannose

receptor, DC-SIGN, and others [54–60]. Since C-type

lectin members contain various signaling domains and

are represented on different types of antigen-presenting

cells, the design of novel specific glycan-based ligands

could be useful in targeting specific cell types, which in

turn can define the class of T-cell responses [45].

Indeed, the targeting of specific antigen-presenting cell

types has already been proven to effectively induce

regulatory T-cell responses [61]. In this way, C-type

lectin receptor-specific antigen delivery could also be

useful in inducing tolerance instead of immunity.

In this review, we will discuss recent advances on

the use of glycans as a targeting device to manipulate

immune responses toward immunity or tolerance in

the treatment of cancer and autoimmunity. We will

address how glycans can be employed as a targeting

moiety, but also how glycan-derived and glycan-modi-

fied nanoparticles can aid in the steering of immune

responses. Finally, we will highlight some of the latest

developments regarding the use of glycan-directed chi-

meric antigen receptor (CAR)-T cells and discuss some

potential applications of glycan nanodevices.

New glyco-based strategies to steer
immune responses in infection,
cancer, and autoimmunity

Improving immune responses using glycan-

modified nanoparticles and cells

An uncontrolled growth and a resistance to apoptosis

are some of the characteristics hallmarks of cancer. At

early stages, the immune system is able to control

tumor growth; however, as the tumor progresses, some

tumor cells escape immune surveillance and are able to

expand and metastasize to distinct sites to establish

novel tumor nodules. The recent success of immune

checkpoint blockade, using anti-PD-1, PD-L1, or

CTLA-4 antibodies, has demonstrated the power of

the immune system in fighting cancer [62]. Yet, some

patients relapse or do not even respond to this treat-

ment, suggesting the existence of additional immune
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evasion strategies or the absence of effective tumor-

specific adaptive immunity. The targeting of DCs is an

efficient way to improve T-cell activation in cancer

immunotherapy [63]. DC vaccines or antigen-pulsed

DCs can induce antigen-specific T-cell response in vivo

[64], but there is still much to understand for the

development of this type of vaccine. Nanoparticle-

based approaches have been proposed to enhance DC

targeting, deliver immunomodulators to program DCs,

improve antigen stability, and allow for co-delivery of

adjuvants and other molecules of interest on the same

nanoplatform (Fig. 2) [65,66].

C-type lectin targeting for tumor antigen delivery

The recognition and internalization of carbohydrate-

containing antigens by DCs are usually mediated by

C-type lectin receptors [68], such as mannose receptor

and DC-SIGN [45]. Nevertheless, many other C-type

lectins, like the Mincle receptor, may be targeted

through modified natural ligands (Fig. 2) [69].

Although C-type lectins can be targeted through lec-

tin-specific antibodies, we will discuss in this section

solely the use of natural (glycan) ligands as the target-

ing moiety, focussing the model C-type lectins, DC-

SIGN, mannose receptor, and Mincle (Fig. 2). Glycan

recognition by C-type lectins has been recently

reviewed [70].

The mannose receptor has been a prototype lectin in

vaccine studies for decades as a target receptor for

many different mannosylated compounds. These man-

nosylated compounds have been used in different dis-

ease settings, including cancer, allergy, and infection

[71,72]. Coupling of monovalent or multivalent

Fig. 2. Overview of carrier systems used for multivalent glycan display. Multivalent high-mannose glycan presentation on glycoclusters,

polymers, antigens (proteins and peptides), liposomes, dendrimers, and nanoparticles has been successfully used for targeting C-type lectin

receptors, like DC-SIGN, Mincle, and mannose receptor. In contrast, the C-type lectin Mincle associates with the signaling adaptor FcRc,

which upon binding of its ligand microbial cord factor trehalose-6,6-dimycolate directly triggers pro-inflammatory responses. Therefore, the

adjuvanticity of Mincle ligands is widely studied within the field of vaccinology. Adapted from [67].
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mannosides to lipopeptides [73] or proteins also directs

[74–76] antigens to DCs and enhances uptake by the

mannose receptor. In a study on mannosylated MUC1

tandem repeat peptides, the divalent mannosylated

peptide was superior in binding and induction of

MUC1-specific antibodies compared to the monova-

lent mannosylated MUC1 peptide [74]. Mannosylation

with synthetic long constructs specifically promoted

antigen cross-presentation and CD8+ T-cell activation

[77], showing that glycans can indeed skew immune

responses into the desired direction.

Mannose-functionalized nanoparticles have been

employed as the targeting vehicle to reach DCs in vivo

[78]. Chitosan nanoparticles loaded with whole-cell

tumor lysates and modified with mannosylated groups

were able to enhance uptake by murine DCs, resulting

in a delay in melanoma tumor growth due to aug-

mented CD8+ T-cell responses [79]. Also, mannan-

coated PGLA nanoparticles were able to enhance

CD4+ and CD8+ T-cell responses, in this case to the

model antigen ovalbumin (OVA) [80].

Recently, a DNA vaccine-containing liposomes

loaded with MART-1 tumor antigen DNA and a di-

shikimoyl mannose mimic were generated [81]. Upon

injection, these liposomes were efficiently taken up by

CD11c+ DCs and induced long-lasting antitumor

immunity in a prophylactic murine melanoma model.

Also, in a therapeutic setting this vaccine could delay

tumor growth and prolong survival of the mice.

Another study proposed the use of glycan-modified

liposomes to target tumor-associated macrophages

[82], which play a fundamental role in promoting

tumor growth and metastasis when they acquire a

polarized M2 phenotype [83]. Since tumor-associated

macrophages overexpress on their surface mannose

receptors [84], mannose-functionalized liposomes were

synthesized to study the effect of these glycan-nanos-

tructures on tumor-associated macrophage activation

and polarization. Indeed, high internalization of man-

nose-functionalized liposomes was observed in M2

macrophages compared to M1. Interestingly, mannose-

liposomes were able to induce polarization of M0 and

M2 to an M1 phenotype, which was associated with

the expression of a specific costimulatory molecule,

CD86 that boosts an immunological response against

the malignancy. The surprising ability of mannose-li-

posomes to induce the shift from M2 to a M1 pheno-

type underlines that glycan-liposomes could actually

selectively eliminate or re-educate tumor-associated

macrophages, which represents a fascinating goal in

cancer immunotherapies.

The above studies clearly demonstrate the power of

targeting mannose receptor (for an complete overview,

we refer the reader to a more comprehensive review

[85]), yet few mannosylated compounds have made it

to the clinic so far. An exception is the FDA-approved
99Tc-tilmanocept (LYMPHOSEEK�, consisting of a

diethylenetriaminepentaacetic acid (DTPA)-mannosyl-

dextran backbone), which efficiently targets the man-

nose receptor on macrophages and DCs in lymph

nodes and is thus used as a detection agent in sentinel

lymph node procedures [86] in oral and breast cancer,

as well as melanoma [87,88]. From an immunothera-

peutic setting, a 15-year follow-up on clinical trials

employing oxidized mannan–MUC1 revealed that

treatment with the oxidized mannan–MUC1 signifi-

cantly reduced the recurrence rate in stage II breast

cancer patients [89].

Natural ligands for C-type lectin DC-SIGN consti-

tute high-mannose oligosaccharides and Lewis-type

moieties, such as Lewis x (Lex) and Lewis b (Leb).

Since the recognition of carbohydrate antigens is medi-

ated by the carbohydrate recognition domain of DC-

SIGN [90,91], globular nanoparticles mimicking the

physiological glycoproteins of pathogens have been

envisaged as a smart platform to target DC-SIGN. In

particular, Lex or Leb functionalized liposomes have

been exploited to target murine and human DCs.

Phosphatidylcholine/phosphatidylglycerol liposomes,

conjugated to Lex and Leb via maleimide-thiol chem-

istry, were able, in the presence of LPS, to induce

CD4+ and CD8+ T-cell activation 100-fold better than

nonmodified liposomes [92]. Such results are highly

promising in the development of new smart glycan-

based nanoplatforms, showing how crucial the role of

glycan-based liposomes in immunotherapies for the

treatment of tumors can be. Nevertheless, the highest

affinity C-type lectin ligands may not be the best tar-

geting devices. Using a systemic library of multivalent

mannosides conjugated to the melanoma-associated

gp100 antigen and a TLR-7 agonist, Li et al. investi-

gated the binding characteristics to DC-SIGN and

their ability to induce antigen presentation [93].

Strikingly, the compound with the highest affinity for

DC-SIGN, the a-1,2-di-mannoside cluster, actually

hampered T-cell activation.

Also, the antigen formulation, multivalency, and

delivery vehicle are crucial for the type of response

induced. Where DC-SIGN prefers virus size particles/

liposomes, Langerin actually is best targeted with

smaller glycated peptide antigens [58]. Recently,

branched polyamidoamine (PAMAM) dendrimers car-

rying multiple copies of the melanoma gp100 synthetic

long peptide and the shared DC-SIGN and Langerin

ligand Lewis y (Ley) have been prepared as intra-

dermal antitumor vaccine carrier [94]. These
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glycan-functionalized dendrimers were internalized by

skin-resident DCs and were able to stimulate gp100-

specific CD8+ T-cell responses. Moreover, inclusion of

adjuvant may alter the DC maturation status, the way

antigens are handled after uptake by the C-type lectin

and thus the outcome of the induced immune

response. For instance, concomitant TLR4 triggering

promotes cross-presentation to CD8+ T cells after anti-

gen uptake by DC-SIGN [95]. Also when targeting the

mannose receptor, accommodating TLR ligands

enhances the uptake of the vaccine and subsequently

promote the differentiation of Th1 cells [96]. As fur-

ther proof of the value of DC-SIGN targeting for anti-

gen delivery, more recently, virus-like particles (VLP)

were conjugated to either aryl mannoside residues and

an OVA peptide antigen [97]. The construct proved to

induce antigen-specific immune responses (i.e., activa-

tion of CD4+ cells and cytokine release) in mice.

The C-type lectin Mincle is widely expressed on

myeloid cells, including monocytes, macrophages, and

DCs [98]. Mincle acts both as a pathogen receptor, by

recognizing among others fungal [99] and mycobacte-

rial [100] ligands, and as a sensor of death cells

through the interaction with SAP130 released from

dying cells [101]. Mincle associates with the FcRc-
chain and therefore differs from mannose receptor and

DC-SIGN in its ability to directly activate cells with-

out the need of concomitant PPR signaling. Mincle

signaling triggers the SYK-CARD9-Bcl10 axis, leading

to NF-jB activation and production of pro-inflamma-

tory cytokines [101] and shifts macrophage differentia-

tion toward a M1-like phenotype [102]. This unique

characteristic of Mincle provides the rationale for the

adjuvanticity of the microbial cord factor trehalose-

6,6-dimycolate (TDM, Fig. 2) and its synthetic ana-

logue trehalose-6,6-dibehenate (TDB) [103] and

empowers Mincle as a prime target for vaccination

purposes.

In their key study, Decout et al. investigated the role

of the fatty acid tails in TDM, showing that they are

crucial for the binding to the Mincle carbohydrate

recognition domain [104]. Based on the molecular

dynamics simulations, novel glucose derivatives acety-

lated with 2-tetradecyloctadecanoic acid (GlcC14C18)

and mannose derivatives (mannose 2-tetradecyloctade-

canoate, ManC14C18) were synthesized. Both com-

pounds induced high levels of TNFa in mouse and

human DCs and macrophages and strong Th1 and

Th17 responses in vivo. Indeed, several studies have

identified novel TDM and TDB analogues that have

superior agonistic activity [105,106].

Trehalose diamides and sulphonamides, as well as

trehalose diester with shortened acyl chains, appear

more potent than the TDB and TDM compounds in

evoking Mincle signaling, cytokine secretion, and

steering of immune responses [107,108]. Synthetic

TDM derivatives with improved physiochemical prop-

erties have been used to functionalize silica nanoparti-

cles with a superparamagnetic iron oxide core (to

improve separation of the product) [109]. These

nanoparticles were able to trigger Mincle activation in

reporter cell lines and also evoked TNFa and IL-6

secretion in mouse RAW264.7 and human PBMC,

respectively. Combinations of Mincle ligands with

other PPR stimuli, such as Poly I:C [110] or bis-(3’-5’)-

cyclic dimeric guanosine monophosphate (c-di-GMP, a

ligand for the STING receptor) [111], may even pro-

vide superior memory responses and long-lasting cellu-

lar and humoral responses, as demonstrated in cattle

and pigs. Incorporation of both TDB and monophos-

phoryl lipid A (MPLA) enhanced the efficacy of a

Mycobacterium tuberculosis subunit vaccine, providing

long-term protection against a mycobacterial challenge

[112].

To date, novel Mincle agonists are still being identi-

fied and tested for their immune-activating properties,

although structural requirements might differ for

mouse and human Mincle [113], warranting caution in

evaluating the adjuvanticity for Mincle in vivo in mice.

These include among others, the S-layer glycoprotein

from Lactobacillus kefiri [114], whose adjuvant activity

was dependent on the glycan components and on the

presence of Mincle and CARD9 in mouse DCs. Brar-

temicin, a glycosyl glycoside derivative isolated from

Nonomuraea species with similarity in structure to

TDB, was originally identified for its antitumor activi-

ties and is also recognized by Mincle [109,115]. Lipi-

dated Brartemicin analogues and especially the

o-substituted variant showed strong inflammatory

activities, inducing Mincle signaling and pro-inflamma-

tory cytokine responses in both mouse bone marrow-

derived macrophages and human monocytes [116,117].

Together, these results indicate that a thorough

design of C-type lectin receptor-targeting glycans and

their configuration is absolutely required to obtain the

most optimal vaccine formulation. The development of

C-type lectin-specific glyco-mimetics will expand the

tools glyco-chemists can employ in their design to cre-

ate more versatile and C-type lectin-specific targeting

moieties and platforms [118].

Glycoengineering approaches for vaccination purposes

The targeting of C-type lectins is not the only, exclu-

sive way in which glycan-modified products can be

employed for vaccination purposes. Glycosylation not
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only directs the folding of a certain glycoprotein, it

can also control its biological activity, potency, and

pharmacokinetic properties; therefore, the glycoengi-

neering of biologicals is gaining more attention.

Manipulation of the cellular glycosylation machinery

will thus allow for production of recombinant proteins

with preferred glycosylation patterns.

The early, pioneering work using glycosylation

mutants of Chinese hamster ovary (CHO) cells has

been instrumental to decipher the role of individual

glyco-genes and has yielded enormous insight in the

biological processes mediated by glycans [119]. These

glycoengineered cells have been widely used already

for decades in the production of therapeutical proteins

with a defined glycosylation pattern [120]. In the last

decade, technical advances in the field of genetic engi-

neering have revolutionized the possibilities to modify

the glycosylation machinery of cells. Especially, the

use of CRISPR/Cas to abolish or induce expression of

glycosyltransferases or other glycosylation-related

genes has opened up novel possibilities to manipulate

the cellular glycome [121,122]. To date, a whole vali-

dated set of CRISPR guideRNAs (GlycoCRISPR) has

been published to facilitate to glyco-editing of human

cells [123]. Below, we will highlight how glyco-editing

can aid in the optimization of biological agents.

Lysosomal storage diseases are metabolic disorders,

arising from group of single gene defects and charac-

terized by lysosomal dysfunction and an inability to

degrade certain proteins, lipids, or oligosaccharides.

Enzyme-replacement therapy is often the treatment of

choice, yet the targeted delivery of the enzymes is cru-

cial for obtaining the desired therapeutic efficacy.

Early work by Furbish et al. revealed that treating the

rat glucocerebrosidase with neuraminidase enhanced

uptake by the Ashwell–Morell C-type lectin in hepato-

cytes, while b-galactosidase and b-N-acetylglu-

cosaminidase treatment promoted the uptake by

Kupfer cells [124]. In patients with Gaucher’s disease

that lack a functional glucocerebrosidase, the injection

of macrophage-targeted glucocerebrosidase was later

shown to induce objective clinical responses, reversing

the progression of the disease [125]. Recently, a

CRIPSR-based screen was conducted in CHO cells to

manipulate N-glycosylation and mannose-6-phosphate

processing of a-galactosidase A, the enzyme defective

in Fabry disease [126]. Strikingly, depending on the

glycoforms tested, a-galactosidase A showed differen-

tial targeting to the heart, spleen, liver, or kidney.

Moreover, a-galactosidase A decorated with a2-3-
linked sialic acids had an enhanced half-life and dis-

played an improved biodistribution compared to the

a-galactosidase A with a2-6-linked sialic acids. Such

unbiased screens could clearly open up new possibili-

ties to advance existing enzyme replacement therapies

for lysosomal storage diseases.

In immunity, glycosylation has a predominant role

in regulating Fc receptor binding and antibody effector

responses and altered IgG glycosylation patterns are

frequently observed during inflammation, infection, or

autoimmune diseases [127,128]. The Fc-domain of IgG

contains a conserved N-glycosylation site that is most

commonly covered with a biantennary N-glycan that

can carry a bisecting GlcNAc, be core-fucosylated

and/or galactosylated and sialylated [127]. Changes in

Fc-glycosylation and altered biological function were

first reported by Jeffrey Ravetch, who, in 2006,

demonstrated that the anti-inflammatory properties of

intravenous IgG or Fc fragments were due to differen-

tial sialylation of the Fc-glycan [129]. Strikingly, these

anti-inflammatory effects are only observed on Fc-gly-

cans carrying a2-6-linked sialic acids, while IgGs with

a2-3-linked sialic acids do not share these characteris-

tics [130]. In addition, administration of solubilized

glycosyltransferases B4GALT1 or ST6GAL1, that

respectively add galactose or sialic acid, was able to

convert pathogenic IgGs into anti-inflammatory IgGs,

thereby attenuating autoimmune inflammation [131].

Besides sialylation, also other IgG glycoforms impact

the biological activity of the IgG. For instance, a lack

of core fucosylation enhances binding to the FccRIIIa

and promotes antibody-dependent cellular cytotoxicity,

while galactosylated IgG glycoforms bind C1q and

thereby initiate complement activation (nicely reviewed

in Ref. [132]). Clearly, translation of this knowledge to

the clinical-grade monoclonal antibodies could

enhance their efficacy, while reducing safety concerns

or manufacturing costs. Obinutuzumab (anti-CD20) is

probably the first of many glycoengineered antibodies

that have found its way to the clinic and is currently

used for the treatment of B-cell lymphomas [133].

Next to therapeutic antibodies, also other glycopro-

teins may be glycoengineered to enhance their biologi-

cal activity. Interesting in this respect are cytokines,

whose glycosylation status regulates receptor binding,

biological stability, and function [134]. Glycoengi-

neered versions of interferon-a and -b have been devel-

oped that show enhanced pharmacokinetic properties

and prolonged signaling capacities [135,136]. Glycosy-

lated forms of interferon-b are currently used in the

clinic for the treatment multiple sclerosis [137]. Also

different glycoforms of IL-6 [138] and granulocyte col-

ony-stimulating factor [139] have been synthesized for

research and treatment purposes.

Finally, whole cells may undergo genetic remodeling

to express the desired glycosylation pattern. Especially
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in oncology, whole tumor cell vaccines are an attrac-

tive immunotherapy strategy to induce strong cyto-

toxic T-cell responses toward the tumor. In this

context, the GVAX vaccine, consisting of inactivated

tumor cells transduced with the GM-CSF gene, is still

undergoing phase I and II clinical trials in several can-

cer types [140]. The pancreatic GVAX vaccine could

induce antibodies to tumor-associated glycans [141],

suggesting that manipulation of the tumor cell glycome

could potentially augment this response. Indeed, kifu-

nensine treatment of melanoma cells enhanced the

uptake of apoptotic tumor vesicles by DCs and

boosted melanoma-specific T-cell responses, showing

that not only humoral, but also cellular responses

could benefit from glycoengineering of the tumor cell

vaccines [142]. Glycoengineering is of course not lim-

ited to cancer immunotherapy, but extends to infec-

tious diseases and even the dampening of unwanted

inflammatory or autoimmune conditions (discussed

below).

Overall, modifying the glycosylation of therapeutic

recombinant monoclonal antibodies, glycoproteins, or

even whole-cell vaccines is an attractive possibility to

improve newly developed or existing biologicals,

thereby optimizing their use in clinical practice or in

vaccination strategies.

Glycan-based nanoparticles as delivery platforms

In addition to delivering tumor antigens to antigen-pre-

senting cells, nano-approaches could help in potentiat-

ing antitumor responses in combination with PD-1

blockade and OX40 co-stimulation. In this respect,

polysaccharide polymers as delivery systems in in vivo

targeting of DCs have attracted growing interest [143].

Polysaccharide-based nanoparticles, usually prepared

from natural polymers, such as alginate, chitosan, and

its derivatives, cyclodextrin, hyaluronic acid, inulin, pul-

lulan, and their combinations, have gained attention,

because they are often: (a) abundantly available and rel-

atively inexpensive; (b) safe, nontoxic, and nonreacto-

genic; and (c) have a good stability, hydrophilicity,

biocompatibility, and biodegradability. In addition,

polysaccharides can be easily functionalized by (bio)-

chemical means due to the presence of several reactive

groups in their structure and some of them can provide

targeting mechanisms due to receptor recognition and

binding, mucosal adhesion and transport, site-specific

enzymatic degradation, and environmental triggering.

Some of these materials are inherently immunogenic

and can also act as an adjuvant.

In this regard, chitosan, a linear amino polysaccha-

ride obtained by a partial deacetylation of chitin, is

one of the most promising polysaccharide polymers. It

is a nontoxic, biodegradable, biocompatible, and

muco-adhesive polymer which was approved as Gener-

ally Recognized as Safe by the US Food and Drug

Administration. However, chitosan is poorly soluble

and precipitates at physiological pH; thus, several

derivatives have been widely investigated, such as

phosphorylated and mannosylated chitosan and N-tri-

methyl chitosan (TMC). Some examples of experi-

ments on targeting DCs in vivo with antigen-loaded

nanoparticles using chitosan and its derivatives are as

follows: immunization against viral influenza A, hep-

atitis B and bacterial S. equi, and model antigens

(OVA, urease) in immunological studies, as well as

toxoids of tetanus and diphtheria [144].

Table 1 summarizes in vivo experiments with antitu-

mor vaccine candidates using polysaccharide-based

particulate delivery systems for targeting DCs. For all

tabulated DC vaccinations, nanoparticles engineered

from various polysaccharide polymers were used in

nanoparticle-mediated delivery to DCs of antigenic

substances produced in tumor cells. In some cases, to

further enhance immunogenicity, antigens were co-de-

livered with an adjuvant.

Attempts have also been made with nanoparticles,

which use carbohydrates as targeting moiety to

improve the antigen presentation by antigen-presenting

cells. Indeed, anticancer peptide-based vaccines offer

some advantages as the synthesis and purification can

nowadays be carried out in automated fashion, and

the scale-up in Good Manufacturing Practice (GMP)

conditions is usually possible. On the other hand, the

peptide selection process is based on challenging MHC

fitting (furthermore, tumor-driven downregulation of

MHC class I molecules often occurs) and peptides are

susceptible to degradation in vivo. A strategy to

improve the performance of anticancer peptide vacci-

nes is to use suitable delivery systems [154]. Among

the myriads of nanosystems that have been proposed,

the glycosylated ones have often been tested in order

to improve the uptake by antigen-presenting cells. This

is the case of gold nanoparticles coated with simple b-
D-glucosides and a highly immunogenic peptide that

contains a cytotoxic restricted epitope of the bacterial

pathogen Listeria monocytogenes, namely listeriolysin

O 91–99 peptide (LLO91–99), that were challenged in

vaccination of mice bearing melanoma [155]. This con-

struct was designed based on the fact that the LLO91–

99 peptide was able to reduce metastasis in mice when

formulated in a DC-based vaccine. The nanotherapy

based on GNP-LLO91–99 induced tumor apoptosis and

melanoma-specific cytotoxic Th1 responses, with a

similar performance as DC-GNP-LLO91–99 in terms of
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reducing tumor size, but with a better performance

than DC-LLO91–99 vaccines. Furthermore, the adju-

vant activity for recruiting and activating DCs was

demonstrated, confirming the possibility to avoid

ex vivo loading of DCs.

Lipid-calcium-phosphate was used for encapsulation

of a derivative of tyrosinase-related protein 2 peptide

(Trp2180–188), a relatively poor immunogenic peptide,

and used in cancer immunotherapy [156]. Calcium

phosphate (CaP) cores worked as aluminum salt-like

adjuvant and were protected with dioleoylphosphatidic

acid. Cationic dioleoyl-3-trimethylammonium

propane/cholesterol salts were employed to generate

stable nanoparticles together with the insertion in the

outer shell of 1,2-distearoyl-sn-glycero-3-phos-

phatidylethanolamine-PEG carrying mannose deriva-

tives to improve nanoparticle retention in lymph nodes

for efficient antigen stimulation. The polyethylene gly-

col moiety itself served to stabilize the nanoparticles

and to avoid rapid clearance from the body. Also, the

potent PAMP CpG (a TLR9 agonist) was encapsu-

lated in the CaP-nanoparticle’s core together with the

peptide antigen. Immunization with these nanoparti-

cles significantly reduced liver metastasis in CT26 mice

tumor models through the generation of a strong CTL

immune response.

Recently, the synthesis of biodegradable nanoparti-

cles made of nonmannosylated and mannosylated

polylactic-co-glycolic acid/polylactic acid has been

described [157]. These nanoparticles were designed for

the simultaneous in vivo delivery of melanoma-derived

antigens and different Toll-like receptor ligands like

CpG (TLR9) and MPLA (TLR4). This strategy allows

targeting of DCs via a passive phagocytosis-dependent

mechanism and in parallel via an active ligand-medi-

ated targeting through the mannose receptor. These

nanoparticles were able to entrap CpG and MPLA

within the same polymeric matrix allowing the simulta-

neous co-stimulation of different TLRs. In addition,

this study reported the synergism of mannosylated

polymers with PD-1/OX40 immune checkpoint therapy

in mouse models, showing long-term survival and

diminished melanoma growth.

Development of glycan-directed CAR-T cells

Besides the use of glycans as antigen carriers, antigly-

can antibodies offer a unique opportunity to develop

glycan-directed CAR-T cells (Fig. 3). CAR-T cells are

T cells that through genetic engineering express artifi-

cial antigen receptors, consisting of transgenic con-

structs that encode Fab antibody fragments on their

cell surface, linked to a transmembrane region and

intracellular signaling motifs. The specificity for a

given antigen is secured by the Fab regions derived

from heavy and light chains of a respective antibody

directed to that antigen, and the intracellular signaling

domains, usually from CD3zeta, CD28, or 4-1BB, to

facilitate T-cell activation and cytotoxicity [158]. The

recent success and FDA approval for CAR-T therapy

in B-cell leukemia has inspired researchers to develop

novel CAR-T approaches directed against solid tumors

Table 1. Polysaccharides used as nanoparticle carriers.

Polysaccharides for

nanoparticles

Tumor antigen/

adjuvant Study type Outcome Ref.

Cholesteryl pullulan HER2 protein HER2-expressing cancer

patients, clinical trial

Vaccine was well tolerated and induced antigen-

specific immune responses

[145,146]

Cholesteryl pullulan NY-ESO-1 protein NY-ESO-1-expressing tumor

patients, clinical trial

Vaccine induced antigen-specific immune

responses

[147]

Hyaluronic acid Poly-L-lysine /CpG E.G7-OVA lymphoma,

mouse model

Increased growth inhibition and a strong antitumor

memory response

[148]

Hyaluronic acid OVA peptide 257-

254

T1 cervical cancer, mouse

model

Substantial inhibition of tumor growth [149]

Chitosan Whole cancer cell

lysates, mannose

B16 melanoma, mouse

model

Increased tumor growth inhibition [79]

Alginate OVA peptide 323-

329

B16 melanoma, mouse

model

OVA peptide inhibited tumor progression more

effectively than using the peptide alone.

[150]

c-PGA/chitosan MUC1 protein MUC1-expressing cancers,

mouse model

High-level immune response and improved

immunogenicity

[151]

Mannosylated

alginate

OVA E.G7-OVA lymphoma,

mouse model

Major cytotoxic response and increased tumor

growth inhibition

[152]

Chitosan OVA/poly I:C EG.7 and TC-1, mouse

model

Greater antitumor efficacy in EG.7 and TC-1

tumor-bearing mice compared to the control

[153]
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and infectious agents. In this respect, tumor-associated

glycans may offer unique opportunities for CAR-T

design [159,160], whereby the antigen specificity of a

carbohydrate-specific antibody is coupled to the T-cell

activation machinery and inserted to generate the gly-

can-directed CAR-T. The first-generation carbohy-

drate-specific CAR-T cells were developed ~ 20 years

ago and were directed against the tumor-associated

glycans sialyl-Tn [161,162], GD2 [163], and Lewis y

[164]. Although some of these glycans might also be

expressed in healthy tissues, the first clinical trial using

the Lewis y CAR-T showed that the glycan CAR-T

cells displayed some clinical benefit without high-grade

toxicity [165]. Interim results from a phase 1 clinical

trial employing GD2-CAR- natural killer T (NKT)

cells demonstrated that the GD2-CAR-NKT cells

expanded in vivo, homed to the neuroblastoma tumors,

and in one patient even caused an objective response

[166].

Two CAR-Ts have been developed that recognize

the MUC1 protein carrying Tn antigen [167,168],

widely expressed in adenocarcinomas and also on

blasts of acute myeloid leukemia. The MUC1-Tn

CAR-Ts were reactive against multiple tumor types

in vitro and also demonstrated clear antitumor efficacy

in a xenograft model of pancreatic cancer. Recently, a

more sophisticated Tn-specific CAR-T was con-

structed, using an antibody (237Ab) fragment specific

for a Tn-containing glycopeptide in podoplanin [169].

This 237Ab was further optimized showing enhanced

affinity for both the Tn-podoplanin, as well as the Tn-

MUC1 [170]. The CAR-T cells configured with the

optimized antibody displayed a broader cross-

reactivity and more efficient reactivity against O-glyco-

sylation-defective murine and human tumor cell lines

in vitro. In addition, a novel chondroitin sulfate pro-

teoglycan 4 CAR-T could control tumor growth in

glioblastoma preclinical models. [171]

Applications of glycan-directed CAR-T stretch way

beyond tumor therapy and may also be useful in the

treatment of (chronic) infectious diseases (for an over-

view, see Ref. [160]). Especially, the HIV virus has

served as a target in the CAR-T field, with researchers

designing chimeric receptors that bind the surface anti-

gens exposed on infected cells. Ghanem et al. used bis-

pecific CARs based on both the CD4-gp120 and

C-type lectin-high-mannose patch interactions [172]. In

their hands, the CD4-MBL bispecific CAR-T outper-

formed the CD4-DC-SIGN CAR-T, displaying an

enhanced potency toward different HIV strains.

Recently, a CAR-T using the Dectin-1 binding domain

to engage b-glucans on Aspergillus fumigatus has been

developed as well [173]. These Dectin-1 CAR-T cells

efficiently bound the germinating fungi and their appli-

cation led to reduced fungal lesions in vivo.

Although there is a long way to go before the gly-

can-directed CAR-T cells are approved for mainstream

therapy, they show great promise in the fight against

cancer and also infectious diseases and are important

new directions in the CAR-T cell field.

In a literal way, glycosylations can be exploited to

‘steer’ the trafficking patterns of CAR-T cells within

the body. On the surface of leukocytes, expression of

the tetrasaccharide sLex, the canonical-binding deter-

minant for selectins, mediates the migration of these

cells to E-selectin+ endothelial beds. All CAR T cells

Fig. 3. CAR-T represent another strategy to

target distinct glycan epitopes, unique for

tumor cells.
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commercially produced to date lack surface expression

of sLeX, but they characteristically display sialylated

type 2 lactosamines. Accordingly, a(1,3)fucosyltrans-
ferase-mediated cell surface exofucosylation of the

CAR-T cell sialylated type 2 lactosamine acceptors

engenders sLex expression, and these cells are then

capable of migrating with high efficiency to tissue beds

that express E-selectin [174,175]. Since E-selectin

expression is constitutive within marrow microvessels

and is also characteristic of tumor vascular beds, exo-

fucosylated CAR-T cells can enter marrow with

greater efficiency (i.e., for CAR-T cell therapy directed

against leukemias, lymphomas, and multiple myeloma)

and would also have heightened infiltration of tumor

beds in solid malignancies. By increasing the capacity

of administered CAR-T cells to colonize relevant sites

of malignancy, CAR-T cell surface glycoengineering

would decrease the cell dose needed to achieve a

desired therapeutic effect and, commensurately, would

decrease the costs required for in vitro expansion of

CAR-T cells [175].

Suppression of the immune response

The immune system is often generalized as the body’s

defenses against foreign and aberrant tissues, cells, and

molecules. It can be evolutionary conserved, as in the

innate immune system, building on genetically inher-

ited immunity to antigenic structures carried by patho-

gens that are not widely represented in self-tissues. As

pathogens rapidly modify their antigens to circumvent

innate immune attack, higher organisms have devel-

oped an adaptive immune system consisting of lym-

phocytes with a unique repertoire of antigen receptors

produced by somatic mutations and genetic recombi-

nations that complement the diversity of pathogens.

However, the other side of the coin is that the immune

system may also attack self-tissues.

Autoimmune diseases are heterogeneous group of

~ 80 complex diseases characterized by the loss of

immunological tolerance to self-antigens. Autoreactive

antibodies damage tissues that can target and affect

the condition of single or even multiple organs. The

ethology of autoimmune diseases is in most common

cases not fully understood and is believed to be a mix

of predisposing genetic factors, environmental condi-

tions, and bacterial, viral, or fungal infections.

From general point of view, a (very) limited part of

the self-antigen heterogeneity is represented by pro-

teins, whereas the major structural variations are rep-

resented by carbohydrates and to some extent by

lipids. T cells can, however, interact with posttransla-

tional modifications, such as glycans, on the side

chains of the peptide. This is of particular importance

as this could represent new and variable epitopes that

in self-tissues could also be targets for the immune sys-

tem and cause autoimmune diseases.

Microbial infections have long been considered as

one of the risk factors of autoimmune disease. This

molecular mimicry is defined as antigenic similarity

between bacterial and host molecules, including gly-

cans, whereby humoral responses against bacterial

oligosaccharides or peptides result in autoantibodies

and pathological inflammatory reactions and may even

trigger autoimmunity. Moreover, bacterial oligosaccha-

rides mimicking human cell surface glycans may ham-

per humoral and cell-dependent immune responses

[3,176]. In addition, selected bacterial species have

developed strategies to avoid the host’s immune system

by covering their cell wall surfaces by oligosaccharides

similar to that of the host organism. Molecular mimi-

cry has been described for Helicobacter pylori [177],

Streptococcus pyogenes, S. agalactiae, Haemophilus in-

fluenzae [178], Neisseria meningitidis, N. gonorrhoeae

[179], and Campylobacter jejuni strains [180]. C jejuni

expresses on its capsule lipooligosaccharide mimics of

ganglioside residues. Antibodies against C. jejuni cross-

react with host neuronal gangliosides causing serious

neurological disorders, such as autoimmune-based

Guillain–Barr�e syndrome (GBS) [180]. Mycoplasma

pneumoniae, the cause of respiratory tract infections,

has also been linked to GBS through molecular mimi-

cry. Anti-galactocerebrosides antibodies directed

against glycolipids from M. pneumoniae cross-react

with the main glycolipids in the myelin of both the

central and peripheral nervous system. Molecular simi-

larity between the GM1 ganglioside and M. pneumo-

niae glycolipids has also been described [181].

The role of glycans in autoimmune diseases: the case of

rheumatoid arthritis

An intriguing case of a glycan-dependent autoimmune

response is found in rheumatoid arthritis [182]. As

recently reported, one of the few defined glycosylated

target epitopes is located on type II collagen. Interest-

ingly, there is a wide repertoire of different TCR in

both mice and humans that specifically interact with

this glycosylated side chain [183,184]. T-cell recogni-

tion of this epitope is the critical bottleneck for devel-

opment of collagen-induced arthritis in mice [185] and

is also of relevance in rheumatoid arthritis [182]. The

major T-cell recognition site is the side chain of a

lysine at position 264, which can become hydroxylated,

and if this occurs, hydroxylysine can become glycosy-

lated with either a mono- or a disaccharide (galactose
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and glucose). Indeed, immunization of mice (express-

ing the mouse Aq or the human DR*0401) with colla-

gen type II activates T cells that preferentially

recognize the glycosylated lysine side chain.

T-cell recognition of collagen type II thus represents

a unique example of carbohydrate recognition that

could be of fundamental importance for both immune

selection and for tolerance induction and thus the vac-

cination of rheumatoid arthritis. Interestingly, collagen

type II is one of several tissue-specific antigens that are

expressed in the thymus. It is expressed in medullary

thymic epithelial cells [186], which is an antigen-pre-

senting cell that presents endogenous peptides to the

developing T cell [187]. After an antigen-specific inter-

action with the medullary thymic epithelial cell, T cells

are either ignored, deleted, or differentiate into regula-

tory T cells. These medullary thymic epithelial cells

express a fully native triple helical collagen type II,

otherwise expressed only in chondrocytes. However, in

contrast to the chondrocyte [188] it lacks glycosylation.

Consequently, T cells specific for the glycosylated side

chain on the lysine at position 264 escape negative

selection. Thus, due to the glycosylation of collagen

type II, T cells cannot be completely tolerized in the

thymus, hence representing an increased risk of

autoimmune disease.

The glycosylation of collagen type II does not only

provide a risk but also an opportunity. Induction of

tolerance through the exposure to tissue antigens

might be easier to manipulate than the centrally regu-

lated (i.e., thymus) induction of tolerance. In fact, it is

clear that the glycosylated epitope on collagen type II

represents an epitope detected by regulatory T cells

and could induce tolerance [189]. It has been shown

that intravenous injection of complexes of the MHC

class II molecule and the glycosylated CII peptide was

able to prevent the development of arthritis and could

also suppress already established disease [190,191].

Treatment with a nonglycosylated collagen type II

peptide had no effect. Interestingly, the vaccination

effect was dominant as it could be transferred using T

cells and is due to a strengthened peripheral tolerance,

that is, the critical physiologic mechanism giving pro-

tection from an overactivated self-reactive immune sys-

tem. In conclusion, the T-cell recognition of O-linked

glycosylation could play a critical role in protecting us

from autoimmune disease.

Taken together, T-cell recognition of collagen type

II represents a unique recognition of carbohydrates

that could be of fundamental importance for both

selection of the immune system and for tolerance

induction [186] and thereby vaccination of rheumatoid

arthritis [190]. Thus, redirecting the glycosylation of

antigens can effectively edit their immunogenicity

toward more tolerogenic responses, which might be

harnessed in future therapies to cure allergies or

autoimmune diseases.

Immunomodulation by mono- and multivalent

carbohydrate conjugates

Just very recently, a novel strategy for modulating

immune responses by multivalent carbohydrate conju-

gates was presented by Herrendorff et al. [192] This

methodology was successfully implemented in an

in vivo model for anti-myelin-associated glycoprotein

(MAG) neuropathy with an autoimmune etiology,

where high titers of the IgM anti-MAG antibodies are

unequivocally associated with myelinated nerve fiber

demyelination (Fig. 4) [193,194]. IgM anti-MAGs rec-

ognize human natural killer-1 (HNK-1) trisaccharide

epitope SO3-3-GlcA(b1–3)Gal(b1–4)GlcNAc, which is

highly expressed on MAG (Fig. 4). Upon recognition,

IgM anti-MAGs recruit complement and provoke

MAG phagocytosis with concomitant direct inhibition

of MAG’s adhesion and signaling functions. The pre-

sent therapies for anti-MAG neuropathy, using non-

specific immunosuppressives, act to reduce anti-MAG

antibodies, but due to a lack of selectivity lead to sev-

ere side effects [195]. Herrendorff et al. constructed a

multivalent glycoconjugate with HNK-1 mimics bound

to repetitive e-amino groups of a poly-L-lysine

biodegradable support (Fig. 4). The multivalent glyco-

conjugate inhibited binding of IgM anti-MAG anti-

bodies to MAG at low to sub-nanomolar inhibitory

constants, as measured in patients’ sera. Furthermore,

in vivo data clearly demonstrate the efficient removal

of pathogenic anti-MAGs in a mouse model for anti-

MAG neuropathy.

We also point to another molecule in the paradigm

how immunomodulation can be achieved by small car-

bohydrate-based molecules. Probably, the most

advanced molecule in this field is eritoran (Fig. 4), a

mid-sized glycolipid conjugate currently in phase III

clinical trials as a specific immunosuppressant

[196,197]. Bacterial lipopolysaccharide lipid A is a

PAMP that binds to pattern recognition receptor

TLR4 and triggers the release of inflammatory media-

tors that contribute to septic shock by inducing severe

vasodilation, capillary leakage, and pulmonary hyper-

tension. By mimicking lipid A without exerting TLR4

activation, eritoran selectively antagonizes the TLR4-

mediated excessive reaction during infections. Intrigu-

ingly, its effects have not been confirmed in sepsis

shock treatment, but it is currently being evaluated for

influenza-associated cytokine storm treatment.
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The role of glycans in immune suppression: the Siglec

case

Of particular interest in the inhibition of unwanted or

exacerbated immune reactions are sialic acids, which

decorate the majority of mammalian glycans at the cell

surface and in the extracellular space and are therefore

often considered as SAMPs [26,198]. Sialylated struc-

tures are known to interact with sialic acid-binding

immunoglobulin-like receptors or Siglecs (Fig. 5). This

family of lectin receptors is highly expressed within the

immune system, especially on myeloid cells (DC,

macrophages) and on NK cells [199] and many of

them contain immunoreceptor tyrosine-based inhibi-

tory motifs (ITIMs) within their cytoplasmic domains,

allowing them to recruit phosphatases, thereby increas-

ing the threshold for activation.

Particularly, bacteria commonly use host sialic acid

residues to mimic host glycosylation patterns. Due to

the widespread distribution on the host mucosal sur-

face as well as the cellular glycocalyx, acquisition of

sialic acid provides a mechanism of avoiding adaptive

immune recognition, thereby facilitating pathogenic

bacterial survival [199]. For instance, S. agalactiae can

produce its own sialic acid-capped structures that are

able to engage inhibitory Siglecs, preventing host

responses and suppressing pro-inflammatory cytokine

release, oxidative burst, neutrophil extracellular trap

production, and phagocytosis. Another example of

molecular mimicry is sialylated glycans present on the

cell wall of group B Streptococci that are capable of

inhibiting the complement system by reducing the

deposition of C3b fragments on their surface and con-

sequently preventing the membrane attack complex,

Fig. 4. Glyco-based strategies to modulate immune responses. The fragile balance between immune homeostasis and autoimmune

diseases can be guided by glycan epitope-containing reagents. In case of collagen type II-induced arthritis, T cells can be educated to

tolerate the tissue by using glycopeptide-loaded soluble MHC II complexes displaying the troublemaking glycan epitope, whereas in the

case of anti-MAG neuropathy, anti-MAG IgM antibodies are scavenged by HNK-1 glycopolymer conjugates.
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cumulatively enhancing Group B Streptococcus sur-

vival [200–202].
Also, tumor cells are often hypersialylated, which

through the interaction with Siglec receptors leads to

immune evasion in, for example, non-small-cell lung

cancer, colorectal, and ovarian cancer patients [203] as

well as in multiple in vivo murine colorectal, melanoma,

and lung cancer models [204,205]. Indeed, many

research groups focus on abolishing this detrimental sia-

lic acid-Siglec axis in cancer through sialic acid or Siglec

blockade to relieve the immune evasion. These strategies

involve the design of specific inhibitors or sialic acid

mimetics that can block the relevant sialyltransferases

or de novo sialic acid synthesis in the tumor [204,206].

Alternatively, the sialic acids on the tumor may be enzy-

matically removed by targeting tumor cells using

tumor-specific antibodies (anti-HER2) coupled to a sial-

idase, which subsequently cleaves the sialic acids,

thereby releasing the brakes on the immune system

[207]. Next to suppressing sialic acid expression in the

tumor, other approaches focusing on the immune inhi-

bitory Siglecs and specific small molecule inhibitors of

Siglec-7 on NK cells have already been developed [208].

Nevertheless, the immune suppression mediated by

the sialic acid-Siglec engagement might also be har-

nessed to actually suppress immune responses. Bertozzi

and co-workers developed sialoside glycopolymers that

contain the Siglec-7 ligand GD3. These polymers can

effectively be incorporated in cells, thereby inhibiting

NK cell-mediated cytotoxicity through the engagement

of Siglec receptors on the NK cell surface [209].

Proof of principle was also provided by the work of

Perdicchio et al. [210,211] Through chemical coupling

the authors decorated the model antigen OVA with

sialic acids, which were able to reprogram DC

responses and inhibit pro-inflammatory T helper 1

responses and facilitating de novo differentiation of

regulatory T cells both in vivo and in vitro in a Siglec-

E-dependent manner. Poly(lactic-co-glycolic acid)

nanoparticles decorated with a2-8 sialic acids have

strong anti-inflammatory properties and could inhibit

pathology in several LPS-induced sepsis models

through engagement of Siglec-E and by augmenting

IL-10 secretion in mouse macrophages [212].

The restricted expression of CD22 (Siglec-2) on B

cells has inspired researchers to target this receptor for

instructing B-cell tolerance or to dampen harmful B-cell

responses allergy or autoimmunity. By incorporating

high-affinity CD22 ligands (BPANeuGca2-6Galb1-
4GlcNAc) in antigenic liposomes, antigen-specific B

cells go into apoptosis and are thus deleted from the

repertoire [213]. Indeed, these so-called STALs (Siglec-

engaging tolerance-inducing antigenic liposomes) could

prevent sensitization to the peanut allergen Ara h 2

[214]. Similarly, rapamycin-incorporated STALs, using

OVA as a model antigen, were only effective prior to

sensitization and showed little efficacy in previously sen-

sitized mice [215]. Proof of concept for the treatment of

autoimmune disease was provided by the study of Bed-

nar et al. [216] STALs containing the human CD22

ligand 60MBP-5F-Neu5Ac and synthetic cyclic citrulli-

nated peptides could prevent in vitro production of

autoantibodies by B cells isolated from rheumatoid

arthritis patients. Also in vivo, STALs containing the

citrullinated peptides tolerized mice inhibiting subse-

quent autoantibody production to citrullinated peptide

Fig. 5. Sialylated tumor-associated glycans

can dampen antitumor immune response

through interaction with Siglecs, a family of

inhibitory receptors found on DCs. Through

the interaction with, for instance, Siglec-7.

DCs instruct the differentiation of Treg,

while T helper 1 (Th1) responses are

inhibited, together promoting tumor growth

(left). On the other hand, Siglec-mediated

inhibition might be harnessed to prevent

overactive immune response in allergy,

chronic inflammation, and autoimmune

disease settings, for example, by using

artificially designed sialylated polymers or

conjugates to control unwanted T helper

responses and to promote Treg

differentiation (right).
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challenge. Overall, sialic acid-containing liposomes are

a promising new tool to abolish unwanted B-cell immu-

nity, yet further improvements are required to reach

their full potential in already sensitized individuals. A

newly developed humanized CD22 transgenic mouse

model, constructed by knock-in of the extracellular

human CD22 coupled to the intracellular domains of

murine CD22, will be of great help in the preclinical

assessment of novel STAL formulations [217].

Besides CD22, other Siglecs, such as Siglec-8 and

CD33 (Siglec-3), form attractive targets for glycan-

based immunotherapy of allergic responses. Siglec-8

has a very restricted expression pattern and is only

present on eosinophils, mast cells and to a lesser extent

on basophils. The anti-Siglec-8 antibody AK002

(lirentelimab) has shown promising results in a phase 2

clinical trial inhibiting gastrointestinal symptoms in

patients with eosinophilic gastritis or duodenitis [218].

High-affinity sialic acid-based ligands have now been

identified for Siglec-8 (60-O-sulfo NSANeu5Ac) [219],

paving the way for glycan-based targeting of Siglec-8.

CD33 is highly expressed on mast cells and thus could

be employed to counteract mast cell degranulation.

Indeed, liposomes loaded with trinitrophenol as the

model antigen and a high-affinity sialic acid analogue

ligand for CD33 bound human mast cells in a CD33-

dependent manner and could inhibit IgE/FceRI signal-

ing, as well as IgE-mediated anaphylaxis in human

CD33 transgenic mice in vivo [220].

Together, these results indicate that it might be

achievable to develop nanovaccines that instead of

activating immunity actually dampen unwanted

immune responses in sepsis, allergy, and autoimmu-

nity, thus extending the repertoire of vaccine modali-

ties and functional approaches.

Final considerations and future
perspective

In conclusion, the combination of nanotechnology and

glycans signifies an added value in the constant effort

to achieve effective carbohydrate-based cancer treat-

ments. The importance of controlling the antigen dis-

play and the insertion of different epitopes and

adjuvants on the same formulation seem to point out

that controlled nanoengineering could help at obtain-

ing universal platforms for fully or semi-synthetic gly-

covaccines. A rational design of C-type lectin-targeting

glycans and their configuration is of utmost impor-

tance to obtain the optimal vaccine formulation. This

is a crucial point that must be taken into account in

antigen-presenting cell-targeting glycan-based vaccines.

However, the importance of checking (nano)toxicity

should be a priority together with a quality by design-

like approach in order to foresee from the beginning

whether the concrete nanosystems are suitable for

scale-up and GMP production.

Vaccine development using glyco-decorated gold

nanoparticles, poly- or oligosaccharide conjugates, gly-

cosylated nanovaccines, and specific glycopeptides and

glycoproteins, all aim to achieve a better antigen pre-

sentation or better antigen delivery. However, strate-

gies aimed at modulating immune response go well

beyond this approach and may even involve a damp-

ening of immune reactions in autoimmunity or allergic

diseases. We have highlighted some case-stories, with

high potential, including the use of glycopeptides to

induce tolerance to collagen type II in RA, as well as

the use of sialic acids or HNK-1 mimics to dampen

unwanted immune responses.

The advancements of the last decade in glycan ana-

lytics and glyo-gene engineering will open up new ave-

nues to explore the contribution of glycans in

autoimmune and antitumor immune responses. More-

over, it will expand our knowledge on the expression

of autoimmune and tumor-specific glycan structures,

their recognition by lectin receptors, and the subse-

quent immune modulation through lectin signaling.

Finally, the development of specific glycan moieties or

glyco-mimetics will enable the specific targeting of

individual lectin receptors, taking advantage of their

intrinsic ability to facilitate antigen uptake and pro-

cessing and to steer immune responses. This efforts

require a continuous communication between immu-

nologists and glyco-chemists, which we envision will

propagate the design and development of the novel

glycan-based immunotherapies of the future.
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