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find the most convenient natural setting of Dirichlet boundary control problem for the Laplacian and
the advection diffusion reaction equations.After converting the continuous problem to an optimization
problem, we solve it by “discretize-then-optimize” approach. In final, we estimate the optimal priori
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1. Introduction

Let Ω be a convex polygonal domain in R2. In this paper, we consider the following Dirichlet
boundary optimal control problem,

min
{q}

J(y, q) =
1
2
‖y − ŷ‖2L2(Ω) +

α

2
‖q‖2L2(Γ) (1.1)

subject to the advection-diffusion equation

−∆y(x) + ~β(x) · ∇y(x) + c(x)y(x) = f (x), x ∈ Ω, (1.2a)
∗This work is part of the author’s Ph.D. thesis, prepared at the University of Connecticut, CT, USA, 2016.
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y(x) = q(x), x ∈ Γ. (1.2b)

Here, y(x) denotes the state variable, ŷ(x) is the desired state, (1.2a) and (1.2b) are called the state
equation, q(x) is the control, Γ = ∂Ω.

We assume the given functions f (x), ŷ(x) ∈ L2(Ω), ~β(x) ∈ [W1
∞(Ω)]2, c(x) ∈ L∞(Ω) with the

assumption

c(x) −
1
2
∇ · ~β(x) ≥ 0,

and α > 0 is a given scalar.
This problem is important in many applications, for example distribution of pollution in air [1] or

water [2] and for problems in computational electro-dynamics, gas and fluid dynamics [3]. However,
there are several challenges involved in solving this problem numerically. One problem arises for
higher order elements and nonsmooth Dirichlet data which can cause serious problems in using
standard finite element methods (see [4, 5]). Another difficulty lies in the fact that Dirichlet boundary
conditions do not enter the bilinear form naturally and that causes problems for analyzing the finite
element method (see [6–10] for further discussion).

One faces another challenge in the presence of layers which are the regions where the gradient of
the solution is large. Usually, the boundary layers occur because of the fact that problem has reduced
to the first order PDEs and requires boundary conditions on inflow part of the boundary only. In this
case, standard Galerkin methods fail when h|~β| > 1, where h is mesh size, producing highly oscillatory
solutions. A lot of research has been done in last 40 years to address this difficulty (see [3, 4, 11–13]).

We have an example to illustrate this difficulty in the following simple example,

Example 1.1.
−εy′′(x) + y′(x) = 1, x ∈ (0, 1),

y(0) = y(1) = 0.
(1.3)

Figure 1. Standard Galerkin.

The Figure 1 shows nonphysical oscillations of the standard Galerkin solution for h = 0.1 and
ε = 0.0025.
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One way to solve this problem is to use stabilized methods (see [14]). We will mention some of
them. One of the first stable method of arbitrary order is SUPG (Streamline Upwind Petrov
Galerkin) [11, 15, 16]. In this method, the space of test function is different from the space of trial
function and chosen such that the method is stable and consistent. Other stabilized methods where the
space of trial and test functions are the same and used upwind stabilization are HDG (Hybridizable
Discontinuous Galerkin), [17–21], SIPG (Symmetric Interior Petrov Galerkin) [5, 7, 10], and LDG
(Local Discontinuous Galerkin) [22–24]. Another popular stabilized method where the space of trial
and test functions are the same is edge stabilization [25, 26].

DG methods are shown to be robust for the advection-diffusion-reaction problem (see [7, 27]) even
for the advection-dominated case. DG methods were not only analyzed for the
advection-diffusion-reaction problem but also for the optimal control problem of the
advection-diffusion-reaction equation [28], (see other stabilized methods for the optimal control
problem of the advection-diffusion-reaction equation [26, 29, 30]). In addition to being stable, the
discontinuous Galerkin methods, such as SIPG, usually treat the boundary conditions weakly. The
SIPG method was also analyzed for distributed optimal control problems and optimal local and global
error estimates were obtained (see [28] but not for the boundary control problems. We would like to
investigate the performance of the SIPG method applied to Dirichlet boundary control problem (1.1),
(1.2a) and (1.2b) and prove a priori error estimates. We would also like to perform a number of
numerical experiments to confirm our theoretical result which is the main subject of the current work.

In this paper, we analyze the SIPG solution of Dirichlet boundary control problem and the
difficulties with dealing with the stability issues as well as with the difficulty of the treatment of
Dirichlet boundary conditions. This method has some attractive features and offers some advantages.
This method is stable and accurate, can be of arbitrary order and has been shown analytically that the
boundary layers do not pollute the solution into the subdomain of smoothness [28]. Another attractive
feature of the method is that Dirichlet boundary conditions are enforced weakly through the penalty
term and not through the finite dimensional subspace [25]. As a result of the weak treatment of the
boundary conditions, Dirichlet boundary control enters naturally into the bilinear form and makes
analysis more natural [6–8, 31]. Finally, the SIPG method has the property that two strategies
optimize-then-discretize and discretize-then-optimize produce the same discrete optimality system
(see [10, 23]), which is not the case for other stabilized methods, for example, SUPG method
(see [15]).

Let us show some features of SIPG method with Figure 2 in the previous example. Consider the
problem 1.3 in the example 1 with the much more smaller diffiusion parameter 10−9 instead of −0.0025.
Figure 2 shows the behavior of the SIPG solution for h = 0.1 and ε = 1e−9. As one can see the solution
is stable. The Dirichlet boundary condition at x = 1 is almost ignored by the method as a result of
weak treatment.
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Figure 2. SIPG method.

Our choice of this particular DG method was motivated by good approximation and stabilization
properties of the method. Additional attractive feature of the method is the weak treatment of the
boundary conditions which allows us to set Dirichlet optimal control problem in natural the finite
element frame work and to prove optimal convergence rates for on general convex polygonal domain.
Moreover, we state the main result of the paper is valid for any general convex domain, there exists a
positive constant C independent of h for the error between exact solution of the control function q̄ and
its approximation q̄h such that

‖q̄ − q̄h‖L2(Γ) ≤ Ch1/2(|q̄|H1/2(Γ) + ‖ȳ‖H1(Ω) + ‖ŷ‖L2(Ω)),

for h small enough. Also, we performed several numerical examples to support our theoretical results,
and additionally when we investigate numerically performance of the method in the
advection-dominated case.

2. Elliptic equations with Dirichlet boundary conditions

2.1. Preliminaries

Throughout the paper, we will use standard notation for spaces, completeness and norms. We will
use the standard notation for Lebesgue and Sobolev space, their suitable norms, and L2- inner product.
Thus,

• (u, v)Ω =
∫

Ω
uvdx and 〈u, v〉Γ =

∫
Γ

uvds are the inner products on the domain Ω and its boundary
Γ, respectively.
The corresponding norms respectively are

‖u‖L2(Ω) =
( ∫

Ω

|u|2dx
)1/2

, ‖u‖L2(Γ) =
( ∫

Γ

|u|2)ds
)1/2

.

• H1/2(Γ) = {u ∈ L2(Γ)|∃ũ ∈ H1(Ω) : u = tr(ũ)}.
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• ‖u‖H1/2(Γ) = in f {‖ũ‖H1(Ω)|tr(ũ) = u}.
• |u|H1/2(Γ) = in f {|ũ|H1(Ω)|tr(ũ) = u}.

2.2. Setting the problem

First, let us consider the state equation,

−∆y + ~β · ∇y + cy = f in Ω,

y = q on Γ.
(2.1)

We review some regularity results for various conditions on data which we will use later in the
analysis. The first result is standard and found in [32].

Theorem 2.1. Let f ∈ H−1(Ω) and q ∈ H1/2(Γ). Then Eq (2.1) admits a unique solution y ∈ H1(Ω).
Moreover, the following estimate holds

‖y‖H1(Ω) ≤ C
(
‖ f ‖H−1(Ω) + ‖q‖

H
1
2 (Γ)

)
.

In the case of q = 0 on Γ, f ∈ L2(Ω), and convex Ω, we can obtain a higher regularity of the solution
(see [33]).

Theorem 2.2. Let f ∈ L2(Ω) and q = 0 on Γ. Then, the Eq (2.1) admits a unique solution y ∈ H2(Ω)
and the following estimate holds

‖y‖H2(Ω) ≤ C‖ f ‖L2(Ω).

Remark 2.1. Since the adjoint equation defined by

−∆z − ∇ · (~βz) + cz = y − ŷ in Ω

z = 0 on Γ,

it is also an advection-diffusion equation and the results of the above theorems are valid for the adjoint
equation with similar estimates as well. Also, notice that −~β · ∇z + (c − ∇ · ~β)z = −∇ · (~βz) + cz.

The theory in the case of q ∈ L2(Γ) is more technical and to obtain the desired regularity result, we
use the transposition method [34], which we will briefly describe next.

2.3. The transposition method

Suppose q is smooth enough having continuous derivatives up to the desired order, φ ∈ L2(Ω) and
let y1 and y2 be the solutions of the following equations,

−∆y1 + ~β · ∇y1 + cy1 = 0 in Ω,

y1 = q on Γ,
and

−∆y2 − ∇ · (~βy2) + cy2 = φ in Ω,

y2 = 0 on Γ,

AIMS Mathematics Volume 7, Issue 4, 6711–6742.
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respectively. Then, by the integration by parts and using the fact that y2 = 0 on Γ, we obtain

0 = (−∆y1 + ~β · ∇y1 + cy1, y2)Ω

= (∇y1,∇y2)Ω − 〈
∂y1

∂n
, y2〉Γ + 〈y1~β · ~n, y2〉Γ − (y1,∇ · (~βy2))Ω + (cy1, y2)Ω

= (∇y1,∇y2)Ω − (y1,∇ · (~βy2))Ω + (y1, cy2)Ω

= (y1,−∆y2)Ω + 〈y1,
∂y2

∂n
〉Γ − (y1,∇ · (~βy2))Ω + (y1, cy2)Ω

= (y1,−∆y2 − ∇ · (~βy2) + cy2)Ω + 〈y1,
∂y2

∂n
〉Γ

= (y1, φ)Ω + 〈q,
∂y2

∂n
〉Γ,

where in the last step we use that −∆y2 − ∇ · (~βy2) + cy2 = φ in Ω and y1 = q on Γ. Hence we obtain

(y1, φ)Ω = −〈q,
∂y2

∂n
〉Γ.

The above formula defines a mapping Λ : φ → −∂y2
∂n that is linear and continuous from L2(Ω) to

H1/2(Γ). Since the embedding H1/2(Γ) ↪→ L2(Γ) is compact, Λ is a compact operator from L2(Ω) to
L2(Γ). Hence, its adjoint Λ∗ is a compact operator from L2(Γ) to L2(Ω).

Since (y1, φ)Ω = −
∫

Γ
q∂y2
∂n = 〈q,Λφ〉Γ and 〈q,Λφ〉Γ = (Λ∗q, φ)Ω, we conclude that y1 = Λ∗q. Using

the above, we can define an ”ultra-weak” solution for the Eq (2.1) for Dirichlet data in L2(Γ) as follows.

Definition 2.1. We say that y ∈ L2(Ω) is a unique ultra-weak solution of the Eq (2.1) if∫
Ω

yφ = ( f , p)(H−1(Ω),H1
0 (Ω)) −

∫
Γ

q
∂p
∂n
, ∀φ ∈ L2(Ω),

where p satisfies
−∆p − ∇ · (~βp) + cp = φ in Ω,

p = 0 on Γ.

Now we are ready to provide the following regularity result.

Theorem 2.3. For any f ∈ H−1(Ω) and q ∈ L2(Γ), the Eq (2.1) admits a unique ultra-weak solution
y ∈ L2(Ω). Moreover, the following estimate holds,

‖y‖L2(Ω) ≤ C(‖ f ‖H−1(Ω) + ‖q‖L2(Γ)). (2.2)

Proof. Existence follows from the Definition (2.1). For the uniqueness, we assume that y1 and y2 are
distinct solutions of the Eq (2.1) and let u = y1 − y2, then

−∆u − ∇ · (~βu) + cu = 0 in Ω,

u = 0 on Γ.
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Since H1(Ω) is dense in L2(Ω), it is enough to consider u ∈ H1(Ω). By the Theorem (2.1), we have

‖u‖H1(Ω) = 0.

As a result u = 0, hence y1 = y2 and this contradiction proves the uniqueness.
To show the desired estimate (2.2), we use a duality argument. Let w be the solution of the problem

−∆w − ∇ · (~βw) + cw = y in Ω,

w = 0 on Γ.

By using the above duality argument and using integration by parts and the fact that w = 0 on Γ, we
obtain

‖y‖2L2(Ω) = (y,−∆w − ∇ · (~βw) + cw)Ω

= (∇y,∇w)Ω − 〈y,
∂w
∂n
〉Γ − 〈y,w(~β · ~n)〉Γ + (~β · ∇y,w)Ω + (y, cw)Ω

= (−∆y,w)Ω + 〈
∂y
∂n
,w〉Γ − 〈y,

∂w
∂n
〉Γ − 〈y,w(~β · ~n)〉Γ + (~β · ∇y,w)Ω + (y, cw)Ω

= (−∆y + ~β · ∇y + cy,w)Ω − 〈y,
∂w
∂n
〉Γ

= ( f ,w)Ω − 〈q,
∂w
∂n
〉Γ,

where in the last step we use −∆y + ~β · ∇y + cy = f .
By the trace and the Cauchy-Schwarz inequalities, and by using the Theorem (2.2), we have the

following estimate

‖y‖2L2(Ω) ≤ ‖ f ‖H−1(Ω)‖w‖H1(Ω) + ‖q‖L2(Γ)‖
∂w
∂n
‖L2(Γ)

≤ C(‖ f ‖H−1(Ω) + ‖q‖L2(Γ))‖w‖H2(Ω)

≤ C(‖ f ‖H−1(Ω) + ‖q‖L2(Γ))‖y‖L2(Ω).

Canceling ‖y‖L2(Ω) on both sides, we prove the desired estimate (2.2). �

3. First order optimality system and the regularity of the optimal solution

Next we will provide the first order optimality conditions for the problem (1.1)

Theorem 3.1. Assume that f , ŷ ∈ L2(Ω) and let (ȳ, q̄) be the optimal solution of the Eq (2.1). Then, the
optimal control q̄ is given by ∂z̄

∂n = αq̄, where z̄ is the unique solution of the equation,

−∆z̄ − ∇ · (~βz̄) + cz̄ = ȳ − ŷ in Ω,

z̄ = 0 on Γ.
(3.1)

Proof. Let (ȳ, q̄) be an optimal solution of the Eq (1.1). We set

F(q) = J(y(q), q),

AIMS Mathematics Volume 7, Issue 4, 6711–6742.
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where y(q) is the solution of the Eq (2.1) for a given q ∈ L2(Γ). Let yq be the solution of the problem

−∆yq + ~β · ∇yq + cyq = f in Ω,

yq = q + q̄ on Γ.

By the optimality of (ȳ, q̄) and convexity of Ω, we have that 1
λ
(F(q̄ + λq) − F(q̄)) ≥ 0 for all q and

λ ∈ (0, 1] [35]. For λ = 1, yq = q + q̄, and so F(q̄ + q) − F(q̄) ≥ 0.
Equivalently, if F(q̄ + q) − F(q̄) ≥ 0 for all q in L2(Γ), then q̄ is an optimal solution of the problem.

We find
F(q̄ + q) − F(q̄) = J(yq, q + q̄) − J(ȳ, q̄)

=
1
2

∫
Ω

(yq − ȳ)(yq + ȳ − 2ŷ) +
α

2

∫
Γ

(2qq̄ + q2)

=
1
2

∫
Ω

(yq − ȳ)2 +
α

2

∫
Γ

q2 +

∫
Ω

(yq − ȳ)(ȳ − ŷ) + α

∫
Γ

qq̄.

Let z̄ be the solution of the Eq (3.1). Then, we can estimate the third term of the right hand side by
using the Green’s formula and using the fact that yq = q̄ + q and z̄ = 0 on Γ. Thus, we obtain∫

Ω

(yq − ȳ)(ȳ − ŷ) =

∫
Ω

(yq − ȳ)(−∆z̄ − ∇ · (~βz̄) + cz̄)

= −

∫
Γ

∂z̄
∂n

(yq − q̄) +

∫
Ω

∇z̄ · ∇(yq − ȳ) −
∫

Γ

(yq − ȳ)z̄(~β · ~n) +

∫
Ω

z̄(~β · ∇(yq − ȳ)) +

∫
Ω

(yq − ȳ)cz̄

= −

∫
Γ

∂z̄
∂n

(q̄ + q − q̄) +

∫
Ω

∇z̄ · ∇(yq − ȳ) +

∫
Ω

z̄(~β · ∇(yq − ȳ)) +

∫
Ω

(yq − ȳ)cz̄

= −

∫
Γ

q
∂z̄
∂n

+ (
∂yq

∂n
−
∂ȳ
∂n

)z̄
∣∣∣∣
Γ

+

∫
Ω

z̄ (−∆(yq − ȳ) + ~β · ∇(yq − ȳ) + c(yq − ȳ))︸                                             ︷︷                                             ︸
=0

.

Notice that
∫

Ω
∇z̄ · ∇(yq − ȳ) = (∂yq

∂n −
∂ȳ
∂n )z̄

∣∣∣∣
Γ
−

∫
Ω

z̄∆(yq − ȳ) by using integration by parts. By setting
∂z̄
∂n = αq̄, we have ∫

Ω

(yq − ȳ)(ȳ − ŷ) = −

∫
Γ

q
∂z̄
∂n

= −α

∫
Γ

qq̄.

Putting all results together, we have

F(q̄ + q) − F(q̄) =
1
2

∫
Ω

(yq − ȳ)2 +
α

2

∫
Γ

q2 − α

∫
Γ

qq̄ + α

∫
Γ

qq̄

=
1
2

∫
Ω

(yq − ȳ)2 +
α

2

∫
Γ

q2 ≥ 0,

i.e., (ȳ, q̄) is the optimal solution to the Eq (2.1) with q̄ = 1
α
∂z̄
∂n where α > 0 given any scalar in the

problem (1.1) �

3.1. Strong form of the first order optimality conditions

The first order optimality conditions in the strong form are as the following
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Ad joint equation

 −∆z − ~β · ∇z + (c − ∇ · ~β)z = y − ŷ in Ω,

z = 0 on Γ.
(3.2)

Gradient equation
{

∂z
∂n = αq on Γ, (3.3)

S tate equation

 −∆y + ~β · ∇y + cy = f in Ω,

y = q on Γ.
(3.4)

3.2. Regularity

In the next theorem, we establish the regularity of the optimal solution of the problem (1.2a) and
(1.2b).

Theorem 3.2. Let (ȳ, q̄) ∈ L2(Ω) × L2(Γ) be the optimal solution to the optimization problem (1.1)
subject to the problem (1.2a) and (1.2b), and z̄ be the optimal adjoint state (3.1). Then,

(ȳ, q̄, z̄) ∈ H1(Ω) × H1/2(Γ) × H2(Ω).

Proof. For q̄ ∈ L2(Γ), from the state Eq (3.4), ȳ ∈ L2(Ω) holds by Theorem (2.3).
Since ȳ, ŷ ∈ L2(Ω) and Ω is a convex domain, from the adjoint Eq (3.2), z̄ ∈ H2(Ω) holds by

Theorem (2.2).
Since z̄ ∈ H2(Ω), we have ∂z̄

∂n ∈ H1/2(Γ), from the gradient Eq (3.3), ∂z̄
∂n = αq implies q̄ ∈ H1/2(Γ).

Since q̄ ∈ H1/2(Γ), from the state Eq (3.4), ȳ ∈ H1(Ω) holds by Theorem (2.1). �

Remark 3.1. Using regularity results, we can generalize the regularity which depends on the largest
interior angle of the polygonal domain in R2 [36].

4. Discontinuous Galerkin discretization

The idea of the FEM is to construct Vh and Qh defined on a finite dimensional space that is well
approximate the solution spaces V and Q. The Galerkin FEM is to find yh ∈ Vh and qh ∈ Qh such that

ah(yh, vh) = `h( f ; qh, vh), ∀vh ∈ Vh, (4.1)

where Vh is a finite dimensional space and h is a discretization parameter. We can easily see that if
ah(·, ·) satisfies the conditions of Lax-Milgram Lemma, the Eq (4.1) has a unique solution for each h.

To construct Vh, we consider a family of conforming quasi-uniform shape regular triangulations Th

of Ω such that Ω̄ = ∪τi∈Thτi and τi ∩ τ j = 0 ∀τi, τ j ∈ Th, i , j with a mesh size

h = supτi∈Thdiam(τi).

We define Eh as a collection of all edges Eh = E0
h ∪ E∂

h where E0
h and E∂

h are the collections of
interior and boundary edges, respectively, and we decompose the boundary edges as

E∂
h = E+−

h h , (4.2)

AIMS Mathematics Volume 7, Issue 4, 6711–6742.
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where E−h := {e ∈ E∂
h : e ⊂ {x ∈ Γ : ~β(x) · ~n(x) < 0}} and E+

h := E∂
h\E

−
h i.e. these are the collections of

the edges that belong to the inflow and outflow part of the boundary, respectively. In other words, for a
given elements τ ∈ Th and nτ indicates the outward normal to τ, then we can decompose its boundary
∂τ as ∂τ− = {x ∈ ∂τ : ~β(x) · ~nτ(x) < 0} and ∂τ+ = {x ∈ ∂τ : ~β(x) · ~nτ(x) ≥ 0}.

We define the standard jumps and averages on the set of interior edges by

{ϕ} =
ϕ1 + ϕ2

2
, [[ϕ]] = ϕ1~n1 + ϕ2~n2,

{~φ} =
~φ1 + ~φ2

2
, [[~φ]] = ~φ1 · ~n1 + ~φ2 · ~n2,

where ~n1 and ~n2 are outward normal vectors at the common boundary edge of neighboring elements τ1

and τ2, respectively. If e ∈ E∂
h, then {ϕ} = [[ϕ]] = ϕ|e [37, 38]. Define the discrete state and control

spaces as
Vh := {yh ∈ L2(Ω) : yh|τ ∈ Pk(τ) ∀τ ∈ Th}, (4.3)

Qh := {qh ∈ L2(Γ) : qh|τ ∈ Pl(τ) ∀τ ∈ E∂
h}, (4.4)

respectively. We denote by Pk,Pl the space of polynomials of degree at most k on each element and at
most l on each edge, respectively. In general, the state and control variables can be approximated by
polynomials of different degrees k,l∈ N.

Here, we use the symmetric interior penalty Galerkin (SIPG) method to approximate to the problem.
In deriving the SIPG method, we use the following identity∑

τ∈Th

(~φ · ~n, ϕ)∂τ =
∑
e∈Eh

({~φ}, [[ϕ]])e +
∑
e∈E0

h

([[~φ]], {ϕ})e

=
∑
e∈E0

h

({~φ}, [[ϕ]])e + ([[~φ]], {ϕ})e +
∑
e∈E∂

h

(~φ · ~n, ϕ)e.

The SIPG solutions qh ∈ Qh , yh ∈ Vh and a constant advection field ~β satisfies the Eq (4.1) for all
vh ∈ Vh where

ah(yh, vh) =
∑
τ∈Th

(∇yh,∇vh)τ +
∑
τ∈Th

(~β · ∇yh + cyh, vh)τ

+
∑
e∈Eh

[
γ

h
([[yh]], [[vh]])e − ({∇yh}, [[vh]])e − ([[yh]], {∇vh})e]

+
∑
e∈E0

h

(y+
h − y−h , |~n · ~β|v

+
h )e +

∑
e∈E−h

(y+
h , v

+
h |~n · ~β|)e,

(4.5)

where γ is the penalty parameter, which should be chosen sufficiently large to ensure the stability of
the SIPG scheme [37, 39, 40], and y−h = lim

ζ→0+
yh(x − ζ~β), y+

h (x) = lim
ζ→0+

yh(x + ζ~β),

`h( f ; qh, vh) =
∑
τ∈Th

( f , vh)τ +
∑
e∈E∂

h

(
γ

h
(qh, [[vh]])e − (qh, {∇vh})e) +

∑
e∈E−h

(qh, v+
h |~n · ~β|)e. (4.6)
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Then, DG solution is defined as a solution of ah(yh, vh) = `h( f ; qh, vh) for al all vh ∈ Vh, and mesh
dependent norm

|||vh|||
2 = ‖vh‖

2
h =

∑
τ∈Th

‖∇vh‖
2
τ + ‖vh‖

2
τ +

∑
e∈E∂

h

γ

h
‖[[vh]]‖2e ,

which is equivalent to the energy norm [38].

4.1. Well-posed

It has been shown, for example [7], that the bilinear form (4.5) is coercive and bounded on Vh i.e.,
ah(vh, vh) ≥ C|||vh|||

2 and ah(yh, vh) ≤ C|||yh||||||vh|||, respectively. Thus, Lax-Milgram Lemma guarantees the
existence of a unique solution yh ∈ Vh of the Eq (4.1) for all vh ∈ Vh.

4.2. Discrete optimality system

We apply the SIPG discretization to the optimal control problem (1.1). Now, define the discrete
Lagrangian as

Lh(ȳh, q̄h, z̄h) = J(ȳh, q̄h) + ah(ȳh, z̄h) − `h( f , q̄h).

Then, setting the partial Frechet derivatives with respect to yh, qh and zh to be zero, we obtain
the discrete optimality system.Then, the discretized optimal control problem has a unique solution
(yh, qh) ∈ VhxQh if only if there exists zh ∈ Vh holds the following system:

∂Lh

∂ȳh
ψh = 0⇒ ah(ψh, z̄h) = `h(ŷ − ȳh; 0, ψh) ∀ψh ∈ Vh, (4.7)

∂Lh

∂q̄h
φh = 0⇒ 〈

∂z̄h

∂n
, φh〉Γ = −〈αq̄h, φh〉Γ +

γ

h
〈z̄h, φh〉Γ + 〈z̄h|~n · ~β|, φh〉Γ ∀φh ∈ Qh, (4.8)

∂Lh

∂z̄h
ϕh = 0⇒ ah(ϕh, ȳh) = `h( f ; qh, ϕh) ∀ϕh ∈ Vh. (4.9)

5. DG error estimates

5.1. Auxiliary estimates

We will need some auxiliary estimates that we will use in the proof of the main result. First, we
have some standard estimates which are trace and inverse inequalities and the proofs can be found
in [41–43].

Lemma 5.1. There exist positive constants Ctr and Cinv independent of τ and h such that for ∀τ ∈ Th,

‖v‖∂τ ≤ Ctr(h−1/2‖v‖τ + h1/2‖∇v‖τ), ∀v ∈ Hk+1(τ), (5.1)

‖∇vh‖τ ≤ Cinvh−1‖vh‖τ, ∀vh ∈ Vh, (5.2)

for integer k ≥ 0

Then, we need some basic estimates for L2-Projection where Ph : L2(Ω) → Vh is the orthogonal
projection such that (Phv, χ)τ = (v, χ)τ for all v ∈ L2(τ) and χ ∈ Vh.
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Lemma 5.2. Let Ph be L2-projection. Then, we have that ∃Ph : Hk+1 → Vh such that for any τ ∈ Th,

‖v − Phv‖L2(τ) ≤ Chk+1‖v‖Hk+1(τ), ∀v ∈ Hk+1(τ),
‖∇(v − Phv)‖L2(τ) ≤ Chk‖v‖Hk+1(τ), ∀v ∈ Hk+1(τ),

where integer k ≥ 0.

Proof. From Local Approximation used in [30], we know that there exists a local interpolant operator
Ph : Hk+1 → Vh such that for any τ ∈ Th and ∀v ∈ Hk+1(τ),

h‖∇(v − Ph(v))‖τ + ‖v − Ph(v)‖τ ≤ Chk+1‖v‖Hk+1(τ).

Since h‖∇(v − Ph(v))‖τ ≤ h‖∇(v − Ph(v))‖τ + ‖v − Ph(v)‖τ ≤ Chk+1‖v‖Hk+1(τ), we have

h‖∇(v − Ph(v))‖τ ≤ Chk+1‖v‖Hk+1(τ).

Thus,
‖∇(v − Phv)‖L2(τ) ≤ Chk‖v‖Hk+1(τ).

Likewise, we obtain ‖v − Phv‖L2(τ) ≤ Chk+1‖v‖Hk+1(τ). �

Now, we are ready to show the error estimate of SIPG solution in the energy norm.

Lemma 5.3. Let v be the unique solution of the Eq (2.1) to satisfy v ∈ Hk+1(Ω) and vh ∈ Vh be the
SIPG solution of the discretized state equation with piecewise polynomials of degree k. Then,

|||v − vh||| ≤ Chk‖v‖Hk+1(Ω),

for integer k ≥ 0.

The proof can be easily seen by using the well-posedness of the bilinear form (4.5), Lemmas (5.1)
and (5.2), and it can be also found for example in [44, 45]. Next, we will need the estimate of L2-
Projection on the boundary Γ where P∂

h : L2(Γ)→ Qh is defined by 〈q−P∂
hq, φh〉e = 0 for all φh ∈ Ps(e).

Lemma 5.4. Let P∂
h be L2−projection defined on the boundary. Then, for any edge e ∈ E∂

h,

‖q − P∂q‖L2(e) + hs‖q − P∂q‖W s,p(e) ≤ hs|q|W s,p(e) ∀e ∈ E∂
h,

where E∂
h is the set of boundary edges which is described in the Eq (4.2), q ∈ W s,p(e), 0 ≤ s ≤ 1, and

1 < p < ∞.

The proof can be found in [6].
Note that Lemmas (5.1)–(5.4) state for general reqularity which depends on the polynomial degree

k used in SIPG, the regularity on the solution of the optimal control problem is (ȳ, q̄, z̄) ∈ H1(Ω) ×
H1/2(Γ) × H2(Ω) by Theorem (3.2). Thus, the following estimates and the main result will be done by
using the regularity on the solution of the problem in Theorem (3.2).

Since SIPG method treats the boundary conditions weakly, SIPG solution is not zero on the
boundary even if its continuous solution z is. However, the following result says that the norm of
SIPG solution zh on the boundary is rather small.
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Lemma 5.5. Let us define auxiliary variable z̃ to be a solution of the Eq (3.2)

−∆z̃ − ∇ · (~βz̃) + cz̃ = ŷ − yh in Ω

z̃ = 0 on Γ,

and z̃h ∈ Vh be the SIPG approximation solution. Then,

‖z̃h‖L2(Γ) ≤ Ch3/2‖ŷ − yh‖L2(Ω).

Proof. Let z̃ be a solution to the Eq (3.2). Since

‖z̃h‖L2(Γ) = ‖z̃h − z̃‖L2(Γ) = ‖[[z̃h − z̃]]‖L2(Γ),

we can estimated that
‖[[z̃h − z̃]]‖L2(Γ) ≤ Ch1/2|||z̃h − z̃|||,

by using the definition of the energy norm. Thus, by Theorems (2.2), (3.2) and Lemma (5.3), we have
that

‖z̃h‖L2(Γ) ≤ Ch1/2|||z̃h − z̃||| ≤ Ch1/2h‖z̃‖H2(Ω) ≤ Ch3/2‖ŷ − yh‖L2(Ω).

�

The estimate of |||y − yh||| is more involved because (y−yh) does not satisfy the Galerkin orthogonality
by (y − yh) < Vh and ah(y − yh, vh) , 0 for vh ∈ Vh. First, we can show the following result.

Lemma 5.6. Let y and yh satisfy

ah(y, v) = `h( f ; q, v), ∀v ∈ H1(Ω),
ah(yh, χ) = `h( f ; qh, χ), ∀χ ∈ Vh.

Then,
|||y − yh||| ≤ C(h−1/2‖q − qh‖L2(Γ) + ‖y‖H1(Ω)).

Proof. By the coersivity, adding and subtracting Phy, we have

|||y − yh|||
2
≤ ah(y − yh, y − yh) = ah(y − yh, Phy − yh)︸                  ︷︷                  ︸

I

+ ah(y − yh, y − Phy)︸                 ︷︷                 ︸
II

.

II :
By using the boundedness of ah(., .), Theorem (3.2) and Lemma (5.3), k = 0 and we obtain

ah(y − yh, y − Phy) ≤ |||y − yh||||||y − Phy||| ≤ C|||y − yh|||‖y‖H1(Ω).

I :
Since(Phy − yh) ∈ Vh, we have ah(y − yh, Phy − yh) = `h(0; q − qh, Phy − yh). Then, we have

`h(0; q − qh, Phy − yh) =
∑
e∈E∂

h

(
γ

h
(q − qh, [[Phy − yh]])e − (q − qh, {∇(Phy − yh)})e)

+
∑
e∈E−h

(q − qh, (Phy − yh)+|~n · ~β|)e.
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By the definition of `h(, ), we can see that
∑

e
γ

h (q−qh, [[Phy− yh]])e is the dominating term by being
γ

h large. Using the fact that ‖[[Phy − yh]]‖L2(Γ) is a part of the energy norm and Lemma (5.3) for k = 0
since y ∈ H1(Ω), we have

`h(0; q − qh, Phy − yh) ≤ C
∑

e

γ

h
(q − qh, [[Phy − yh]])e

≤ Ch−1

∑
e

‖q − qh‖
2
L2(e)

1/2 ∑
e

‖[[Phy − yh]]‖2L2(e)

1/2

≤ Ch−1‖q − qh‖L2(Γ)‖[[Phy − yh]]‖L2(Γ) ≤ Ch−1‖q − qh‖L2(Γ)h1/2|||Phy − yh|||

≤ Ch−1/2‖q − qh‖L2(Γ)(|||Phy − y||| + |||y − yh|||)
≤ Ch−1/2‖q − qh‖L2(Γ)(‖y‖H1(Ω) + |||y − yh|||).

The other terms in `h(0; q − qh, Phy − yh) can be estimated with the similar way. Thus,

|||y − yh|||
2 ≤ I + II

≤ C‖y‖H1(Ω)|||y − yh||| + Ch−
1
2 ‖q − qh‖L2(Γ)|||y − yh||| + Ch−

1
2 ‖q − qh‖L2(Γ)‖y‖H1(Ω)

≤
1
4
|||y − yh|||

2 + Ch−1‖q − qh‖
2
L2(Γ) + C‖y‖2H1(Ω).

By first taking the square root and then canceling |||y − yh||| , we obtain

|||y − yh||| ≤ C(h−1/2‖q − qh‖L2(Γ) + ‖y‖H1(Ω)).

�

Using a duality, we can show better estimate in L2 norm.

Lemma 5.7. Let y be the solution of the Eq (2.1) and yh in Vh satisfy the bilinear form (4.5). Then,

‖y − yh‖L2(Ω) ≤ C(h1/2‖q − qh‖L2(Γ) + h‖y‖H1(Ω)).

Proof. Since yh is not a Galerkin projection of y, let us define ỹh by ah(y − ỹh, χ) = 0 for χ ∈ Vh. Then,
by the triangle inequality, we have

‖y − yh‖
2
L2(Ω) ≤ ‖y − ỹh‖

2
L2(Ω)︸        ︷︷        ︸

K1

+ ‖ỹh − yh‖
2
L2(Ω)︸          ︷︷          ︸

K2

.

K1

Consider the following equation,

−∆t − ∇ · (~βt) + ct = y − ỹh in Ω

t = 0 on Γ.

By the boundedness of the bilinear form and using the Galerkin orthogonality,

‖y − ỹh‖
2
L2(Ω) = ah(y − ỹh, t)

= ah(y − ỹh, t − Pht) + ah(y − ỹh, Pht)︸           ︷︷           ︸
=0

≤ C|||t − Pht|||.|||y − ỹh||| ≤ Ch‖t‖H2(Ω)|||y − ỹh|||.
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By using Theorem (2.2) and Lemma (5.3), we obtain

K1 ≤ Ch‖y − ỹh‖L2(Ω)‖y‖H1(Ω) ≤
1
4
‖y − ỹh‖

2
L2(Ω) + Ch2‖y‖2H1(Ω).

By canceling ‖y − ỹh‖
2
L2(Ω), we obtain that

K1 ≤ Ch2‖y‖2H1(Ω).

K2 :
Let us define another dual equation,

−∆v − ∇ · (~βv) + cv = ỹh − yh in Ω

v = 0 on Γ.

‖ỹh − yh‖
2
L2(Ω) = ah(ỹh − yh, v)

= ah(ỹh − y, v)︸        ︷︷        ︸
K21

+ ah(y − yh, v)︸        ︷︷        ︸
K22

.

K21 :
Likewise K1,

K21 = ah(ỹh − y, v) = ah(ỹh − y, v − Phv) + ah(ỹh − y, Phv)︸            ︷︷            ︸
=0

≤ C|||v − Phv||||||ỹh − y||| ≤ Ch‖v‖H2(Ω)|||ỹh − y|||.

By using Theorem (2.2) and Lemma (5.3), we obtain

K21 ≤ Ch‖ỹh − yh‖L2(Ω)‖y‖H1(Ω).

K22 :
K22 = ah(y − yh, v) = ah(y − yh, v − Phv)︸                 ︷︷                 ︸

K221

+ ah(y − yh, Phv)︸            ︷︷            ︸
K222

.

By using the boundedness of the bilinear form, Theorem (2.2) and Lemma (5.3),

K221 = ah(y − yh, v − Phv) ≤ C|||v − Phv||||||y − yh||| ≤ Ch‖v‖H2(Ω)|||y − yh|||

≤ Ch‖ỹh − yh‖L2(Ω)|||y − yh|||.

By using Lemma (5.6), we obtain

K221 ≤ Ch‖ỹh − yh‖L2(Ω)|||y − yh|||

≤ Ch‖ỹh − yh‖L2(Ω)(h−1/2‖q − qh‖L2(Γ) + ‖y‖H1(Ω))
≤ C‖ỹh − yh‖L2(Ω)(h1/2‖q − qh‖L2(Γ) + h‖y‖H1(Ω)).

K222 :
Using the fact that v = 0 on Γ, Theorems (2.2), (3.2) and Lemma (5.3), we have that

K222 = ah(y − yh, Phv) = `h(0; q − qh, Phv) ≤ Ch−1‖q − qh‖L2(Γ)‖Phv‖L2(Γ)

≤ Ch−1‖q − qh‖L2(Γ)‖[[Phv − v]]‖L2(Γ) ≤ Ch−1‖q − qh‖L2(Γ)h1/2|||Phv − v|||

≤ Ch−1‖q − qh‖L2(Γ)h1/2h‖v‖H2(Ω) ≤ Ch−1‖q − qh‖L2(Γ)h3/2‖ỹh − yh‖L2(Ω).

AIMS Mathematics Volume 7, Issue 4, 6711–6742.



6726

Then, we obtain
K222 ≤ Ch1/2‖q − qh‖L2(Γ)‖ỹh − yh‖L2(Ω).

Thus, we have

‖ỹh − yh‖
2
L2(Ω) ≤ K21 + K22︸︷︷︸

K221+K222

≤ Ch2‖y‖H1(Ω) + C‖ỹh − yh‖L2(Ω)
(
h1/2‖q − qh‖L2(Γ) + h‖y‖H1(Ω)

)
≤

1
4
‖ỹh − yh‖

2
L2(Ω) + Ch2‖y‖2H1(Ω) + Ch‖q − qh‖

2
L2(Γ).

By canceling ‖ỹh − yh‖
2
L2(Ω), we obtain

‖ỹh − yh‖
2
L2(Ω) ≤ Ch2‖y‖2H1(Ω) + Ch‖q − qh‖

2
L2(Γ).

Finally, we obtain
‖y − yh‖

2
L2(Ω) ≤ ‖y − ỹh‖

2
L2(Ω) + ‖ỹh − yh‖

2
L2(Ω)

≤ C(h‖q − qh‖
2
L2(Γ) + h2‖y‖2H1(Ω)).

By taking the square root, we conclude

‖y − yh‖L2(Ω) ≤ C(h1/2‖q − qh‖L2(Γ) + h‖y‖H1(Ω)).

�

5.2. Main results

Now, we are ready to prove the main result of the paper. We will state it in the next theorem.

Theorem 5.1. Let Ω be a convex polygonal domain, q̄ be the optimal control of the problem (1.1)
and q̄h be its optimal SIPG solution. Then, for h sufficiently small, there exists a positive constant C
independent of h such that

‖q̄ − q̄h‖L2(Γ) ≤ Ch1/2(|q̄|H1/2(Γ) + ‖ȳ‖H1(Ω) + ‖ŷ‖L2(Ω)
)
, (5.3)

where (ȳ, q̄, z̄) ∈ H1(Ω) × H1/2(Γ) × H2(Ω) and ŷ ∈ L2(Ω).

Proof. Since q̄ is the optimal solution of the problem (1.1) and q̄ satisfies the Eq (3.3), we have

α〈q̄, φh〉Γ + 〈φh,
∂z̄
∂n
〉Γ = 0, ∀φh ∈ Qh. (5.4)

Since q̄h is the approximate solution of the problem (1.1) and q̄h satisfies the Eq (4.8), we have

α〈q̄h, φh〉Γ + 〈φh,
∂z̄h

∂n
〉Γ −

γ

h
〈φh, z̄h〉Γ − 〈z̄h|~n · ~β|, φh〉Γ− = 0, ∀φh ∈ Qh. (5.5)

Subtracting the Eq (5.4) from the Eq (5.5), for any φh ∈ Qh, we have

α〈q̄ − q̄h, φh〉Γ + 〈φh,
∂(z̄ − z̄h)
∂n

〉Γ +
γ

h
〈φh, z̄h〉Γ + 〈z̄h|~n · ~β|, φh〉Γ− = 0. (5.6)
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Taking φh = P∂
h(q̄ − q̄h) = P∂

hq̄ − P∂
hq̄h = P∂

hq̄ − q̄h in the Eq (5.6) and splitting

P∂
hq̄ − q̄h = (P∂

hq̄ − q̄) + (q̄ − q̄h),

we obtain
α‖q̄ − q̄h‖

2
L2(Γ) = α〈q̄ − q̄h, q̄ − q̄h〉

≤ α〈q̄ − q̄h, P∂
hq̄ − q̄〉Γ

J1
+ 〈P∂

hq̄ − q̄,
∂(z̄ − z̄h)
∂n

〉Γ
J2

+
γ

h
〈P∂

hq̄ − q̄, z̄h〉Γ
J3

+ 〈P∂
hq̄ − q̄, z̄h|~n · ~β|〉Γ−

J4

+ 〈q̄ − q̄h,
∂(z̄ − z̄h)
∂n

〉Γ
J5

+
γ

h
〈q̄ − q̄h, z̄h〉Γ

J6

+ 〈q̄ − q̄h, z̄h|~n · ~β|〉Γ− J7

= J1 + J2 + J3 + J4 + J5 + J6 + J7.

(5.7)

Now, we shall estimate each term separately. Most terms can be estimated by using the estimate
of the L2-projection. However, the term (z̄ − z̄h) in J2 and J5 is not in the discrete space, so additional
arguments are needed to treat these terms.
Estimate for J1: By the Cauchy-Schwarz inequality and using Lemma (5.4),

J1 = α〈q̄ − q̄h, P∂
hq̄ − q̄〉Γ ≤ α‖q̄ − q̄h‖L2(Γ)‖P∂

hq̄ − q̄‖L2(Γ)

≤ C1h1/2|q̄|H1/2(Γ)‖q̄ − q̄h‖L2(Γ),

where C1 depends on α.
Estimates for J3 and J6: Using Lemma (5.5) to estimate ‖z̄h‖L2(Γ), the Cauchy-Schwarz inequality,
Lemma (5.7) and the regularity of ȳ, then we have

J3 =
γ

h
〈P∂

hq̄ − q̄, z̄h〉Γ ≤
γ

h
‖P∂

hq̄ − q̄‖L2(Γ)‖z̄h‖L2(Γ).

≤ C3h−1h1/2|q̄|H1/2(Γ)h3/2‖ŷ − ȳh‖L2(Ω)

≤ C3h|q̄|H1/2‖ŷ − ȳh‖L2(Ω) ≤ C3h|q|H1/2(‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + ‖ȳ − ȳh‖L2(Ω))
≤ C3h|q|H1/2(‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω)).

Likewise,

J6 =
γ

h
〈q̄ − q̄h, z̄h〉Γ ≤

γ

h
‖q̄ − q̄h‖L2(Γ)‖z̄h‖L2(Γ)

≤ C6h1/2‖q̄ − q̄h‖L2(Γ)‖ŷ − ȳh‖L2(Ω)

≤ C6h1/2‖q̄ − q̄h‖L2(Γ)
(
‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + ‖ȳ − ȳh‖L2(Ω)

)
≤ C6h1/2‖q̄ − q̄h‖L2(Γ)

(
‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω)

)
,

where C3 and C6 depend on γ.
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Estimates for J4 and J7: By using the Cauchy-Schwarz inequality, Lemmas (5.5) and (5.7), we have

J4 = 〈P∂
hq̄ − q̄, z̄h|~n · ~β|〉Γ− ≤ C4h1/2|q̄|H1/2(Γ)‖β‖

1/2
L∞(Γ)‖z̄h‖L2(Γ)

≤ C4h2|q|H1/2(Γ)‖β‖
1/2
L∞(Γ)‖ŷ − ȳh‖L2(Ω)

≤ C4h2|q̄|H1/2(Γ)‖β‖
1/2
L∞(Γ)

(
‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + ‖ȳ − ȳh‖L2(Ω)

)
≤ C4h2|q̄|H1/2(Γ)‖β‖

1/2
L∞(Γ)

(
‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω)

)
.

Likewise,

J7 = 〈q̄ − q̄h, z̄h|~n · ~β|〉Γ− ≤ C7‖β‖
1/2
L∞(Γ)‖q̄ − q̄h‖L2(Γ)‖z̄h‖L2(Γ)

≤ C7‖β‖
1/2
L∞(Γ)‖q̄ − q̄h‖L2(Γ)h3/2‖ŷ − ȳh‖L2(Ω)

≤ C7h3/2‖β‖1/2L∞(Γ)‖q̄ − q̄h‖L2(Γ)
(
‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + ‖ȳ − ȳh‖L2(Ω)

)
≤ C7h3/2‖β‖1/2L∞(Γ)‖q̄ − q̄h‖L2(Γ)

(
‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω)

)
.

Estimate for J5: By the Cauchy-Schwarz inequality,

J5 = 〈q̄ − q̄h,
∂(z̄ − z̄h)
∂n

〉Γ ≤ ‖q̄ − q̄h‖L2(Γ)‖
∂(z̄ − z̄h)
∂n

‖L2(Γ).

Let us define z̃h ∈ Vh to be the SIPG solution to z̄ i.e. ah(χ, z̃h) = (ŷ − ȳ, χ), ∀χ ∈ Vh.
In particular, ah(χ, z̄ − z̃h) = 0 by the Galerkin orthogonality. Thus, we continue as following,

〈q̄ − q̄h,
∂(z̄ − z̄h)
∂n

〉Γ ≤ ‖q̄ − q̄h‖L2(Γ)

‖∂(z̄ − z̃h)
∂n

‖L2(Γ)︸            ︷︷            ︸
J51

+ ‖
∂(z̃h − z̄h)

∂n
‖L2(Γ)︸              ︷︷              ︸

J52

 .
J51:
By the triangle inequality, we have

‖
∂(z̄ − z̃h)
∂n

‖L2(Γ) ≤ ‖
∂(z̄ − Phz̄)

∂n
‖L2(Γ)︸              ︷︷              ︸

J511

+ ‖
∂(Phz̄ − z̃h)

∂n
‖L2(Γ)︸                ︷︷                ︸

J512

.

J511 :
By the trace inequality, Theorem (2.2) and Lemma (5.2), we obtain

J511 = ‖
∂(z̄ − Phz̄)

∂n
‖2L2(Γ) =

∑
e∈Γ

‖
∂(z̄ − Phz̄)

∂n
‖2L2(e)

≤
∑
τ∈Th

(Ch−1‖z̄ − Phz̄‖2H1(τ) + Ch‖z̄ − Phz̄‖2H2(τ))

≤
∑
τ∈Th

Ch‖z̄‖2H2(τ) = Ch‖z̄‖2H2(Ω) ≤ Ch‖ŷ − ȳ‖2L2(Ω).

Thus,

J511 = ‖
∂(z̄ − Phz̄)

∂n
‖L2(Γ) ≤ Ch1/2‖ŷ − ȳ‖L2(Ω).
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J512 :
Since (Phz̄ − z̃h) ∈ Vh, we can apply the trace theorem for discrete function and by using the inverse
inequality and Lemma (5.2), we obtain that

‖
∂(Phz̄ − z̃h)

∂n
‖L2(Γ) ≤ Ch−1/2‖Phz̄ − z̃h‖H1(Ω)

≤ Ch−1/2|||Phz̄ − z̃h||| ≤ Ch−1/2(|||Phz̄ − z̄||| + |||z̄ − z̃h|||)
≤ Ch−1/2h‖z̄‖H2(Ω) ≤ Ch1/2‖ŷ − ȳ‖L2(Ω),

where we have used Lemma (5.3) for k = 1 by Theorem (2.2) and Lemma (5.2).
Thus,

‖
∂(Phz̄ − z̃h)

∂n
‖L2(Γ) ≤ Ch1/2‖ŷ − ȳ‖L2(Ω).

Since J51 = J511 + J512, we obtain

J51 = ‖
∂(z̄ − z̃h)
∂n

‖L2(Γ) ≤ Ch1/2‖ŷ − ȳ‖L2(Ω) ≤ Ch1/2(‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω)).

J52 :
Since we have

ah(χ, z̄h) = (ŷ − ȳh, χ),
ah(χ, z̃h) = (ŷ − ȳ, χ),

where ∀χ ∈ Vh. We obtain

ah(χ, z̃h − z̄h) = (ȳh − ȳ, χ), ∀χ ∈ Vh. (5.8)

Now, let us define the following equation

−∆w − ∇ · (~βw) + cw = ȳh − ȳ in Ω

w = 0 on Γ.

By using the Eq (5.8),

ah(χ, z̃h − z̄h) = ah(χ, z̃h) − ah(χ, z̄h) = (ŷ − ȳ, χ) − (ŷ − ȳh, χ) = (ȳh − ȳ, χ) = ah(χ,wh).

The above equality shows that wh = z̃h − z̄h.
Now, using the inverse inequality and the fact that w = 0 on Γ, we obtain

‖
∂(z̃h − z̄h)

∂n
‖L2(Γ) ≤ Ch−1‖z̃h − z̄h‖L2(Γ) = Ch−1‖z̃h − z̄h − w‖L2(Γ)

≤ Ch−1h1/2|||(z̃h − z̄h) − w|||

≤ Ch−1/2|||wh − w||| ≤ Ch−1/2h‖w‖H2(Ω)

≤ Ch1/2‖ȳh − ȳ‖L2(Ω)

≤ Ch1/2(h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω)),
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where we have used Theorem (2.2) and Lemma (5.3) for k = 1 by Lemmas (5.2) and (5.7) in the last
step.
Thus,

J52 = ‖
∂(z̃h − z̄h)

∂n
‖L2(Γ) ≤ Ch1/2(h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω)).

Finally, we obtain

J5 ≤ ‖q̄ − q̄h‖L2(Γ)(J51 + J52) ≤ C5h1/2‖q̄ − q̄h‖L2(Γ)(‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω)).

Estimate for J2: By using the the estimation of ‖∂(z̄−z̄h)
∂n ‖L2(Γ) in J5, Cauchy-Schwarz inequality and

Lemma (5.4), we have

J2 = 〈P∂
hq̄ − q̄,

∂(z̄ − z̄h)
∂n

〉Γ ≤ ‖P∂
hq̄ − q̄‖L2(Γ)‖

∂(z̄ − z̄h)
∂n

‖L2(Γ)

≤ C2h1/2|q̄|H1/2(Γ)‖
∂(z̄ − z̄h)
∂n

‖L2(Γ)

≤ C2h1/2|q̄|H1/2(Γ)h1/2(‖ŷ‖L(Ω) + ‖ȳ‖H1(Ω) + h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω))
= C2h|q̄|H1/2(Γ)(‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω)).

Thus,
J2 ≤ C2h|q|H1/2(Γ)(‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω)).

After using Lemma (5.7) to estimate ‖ȳ− ȳh‖L2(Ω) and combining J1, J2, J3, J4, J5, J6, J7 in the Eq (5.7),
we obtain

α‖q̄ − q̄h‖
2
L2(Ω) ≤ J1 + J2 + J3 + J4 + J5 + J6 + J7

≤ C1h
1
2 |q̄|H1/2(Γ)‖q̄ − q̄h‖L2(Γ)

+ C2h|q̄|H1/2(Γ)(‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω))
+ C3h|q̄|H1/2(‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω))

+ C4h2|q̄|H1/2(Γ)‖β‖
1
2
L∞(Γ)(‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω))

+ C5h
1
2 ‖q̄ − q̄h‖L2(Γ)(‖ŷ‖H1(Ω) + ‖ȳ‖H1(Ω) + h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω))

+ C6h
1
2 ‖q̄ − q̄h‖L2(Γ)(‖ŷ‖H1(Ω) + ‖ȳ‖H1(Ω) + h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω))

+ C7h
3
2 ‖β‖

1
2
L∞(Γ)‖q̄ − q̄h‖L2(Γ)

(
‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω)

)
.

Notice that we can rewrite the above inequality as

α‖q̄ − q̄h‖
2
L2(Γ) ≤ CIh|q̄|2H1/2(Γ) +

α

4
‖q̄ − q̄h‖

2
L2(Γ)

+ CIIh
(
‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω) + h1/2‖q̄ − q̄h‖L2(Γ) + h‖ȳ‖H1(Ω)

)2
+
α

4
‖q̄ − q̄h‖

2
L2(Γ)

+ CIIIh‖q̄ − q̄h‖
2
L2(Γ).

After all simplification, we obtain

α‖q̄ − q̄h‖
2
L2(Γ) ≤ Ch(|q̄|H1/2(Γ) + ‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω))2 + C′h‖q̄ − q̄h‖

2
L2(Γ),

where h is sufficiently small such that C′h ≤ α
2 to absorb C′h‖q̄ − q̄h‖

2
L2(Γ) to the left hand side. Thus,

we conclude that there exists a positive constant C such that
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‖q̄ − q̄h‖L2(Γ) ≤ Ch1/2(|q̄|H1/2(Γ) + ‖ŷ‖L2(Ω) + ‖ȳ‖H1(Ω)
)
,

provided h is sufficiently small. �

6. Numerical examples

In this section, we show the features of the method and some numerical examples to support our
theoretical results by the method described for the main problem (1.1), (1.2a) and (1.2b). Here, we
present numerical results depending on different kinds of domain as the following.

6.1. Ω is a line segmenent

Since the domain is one dimensional and the boundary is consisting of two points, there is no
regularity limitation due to geometry restriction. Thus, we do not expect an optimal convergence rate,
but we observe that the method is still stable and convergent in Tables 1–3 and Figures 3–4.

By setting Ω = [0, 1], ε = 1, α = 1, ~β = [1], q̄ = (1 − x)2(x2), c = 0, ȳ = x4 − e
x−1
ε −e

−1
ε

1−e
−1
ε

, and

z̄ = α
ε
(1 − x)2x2.

Table 1. 1D Error rates for piecewise linear basis functions.

h L2 − yrate H1 − yrate Le f t − qrate Right − qrate

5.00e-01 1.959 1.002 2.007 1.965
2.50e-01 1.979 1.001 2.006 1.982
1.25e-01 1.990 1.001 2.004 1.991
6.25e-02 1.995 1.000 2.002 1.996
3.12e-02 1.997 1.001 2.001 1.998
1.56e-03 1.999 1.000 2.001 1.999

Table 2. 1D Error rates for piecewise quadratic basis functions.

h L2 − yrate H1 − yrate Le f t − qrate Right − qrate

5.00e-01 2.999 2.013 2.025 2.982
2.50e-01 2.999 2.007 2.683 2.991
1.25e-01 3.000 2.004 2.864 2.996
6.25e-02 3.000 2.002 2.937 2.998
3.12e-02 2.998 2.001 2.969 2.999
1.56e-03 1.938 2.001 2.985 2.999
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Table 3. 1D Error rates for piecewise cubic basis functions.

h L2 − yrate H1 − yrate Le f t − qrate Right − qrate

5.00e-01 4.436 2.436 3.970 3.866
2.50e-01 4.425 3.423 3.985 3.983
1.25e-01 4.380 3.385 3.992 3.991
6.25e-02 1.188 3.320 3.996 3.996
3.12e-02 -0.777 3.223 3.998 3.998
1.56e-03 -1.119 1.268 3.999 3.999

Figure 3. Computed and exact state solution.

Figure 4. State solution error.
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6.2. Ω is a unit square domain

By setting the problem as the following,

Ω = [0, 1] × [0, 1], ~β = [1; 1], c = 1, α = 1, q̄ =
−1
ε

(x(1 − x) + y(1 − y)),

ȳ =
−1
ε

(x(1 − x) + y(1 − y)), z̄ =
α

ε
(xy(1 − x)(1 − y)).

Here, we consider piecewise linear continuous functions to approximate the optimal control.

6.2.1. Numerical results for the regular case (ε � h where h is mesh size) on the unit square domain

The first order conditions allow us deduce the regularity results of the optimal control and so the
expected convergence rate has agreed well with the rate in [6] as ‖q̄ − q̄h‖L2(Γ) ≤ Ch by the square
domain with the largest interior angle wmax = π

2 .
Lemma (5.7) and ‖q̄ − q̄h‖L2(Γ) ≤ Ch yield ‖ȳ − ȳh‖L2(Ω) ≤ Ch3/2. Since the power of h on the right-

hand side drops for one for each derivative of the error (ȳ − ȳh), ‖ȳ − ȳh‖H1(Ω) ≤ Ch1/2 by Lemma (5.2).
Likewise, From Lemma (5.2) and z ∈ H2, ‖z̄− z̄h‖L2(Ω) ≤ Ch2, and so ‖z̄− z̄h‖H1(Ω) ≤ Ch as our expected
convergence rates indicated in Tables 4 and 5. Also, the expected rates have agreed well with the rates
for the different densities of the meshes in [6]. Also, we can see the stability of the method in Figure 5.

Table 4. Error for the regular case on the unit square domain.

h ‖ȳ − ȳh‖L2 ‖ȳ − ȳh‖H1 ‖q̄ − q̄h‖L2 ‖z̄ − z̄h‖L2 ‖z̄ − z̄h‖H1

5.00e-01 1.92e-01 3.91e+00 1.07e+00 4.31e-02 9.19e-01
2.50e-01 8.44e-02 2.25e+00 4.86e-01 1.38e-02 5.06e-01
1.25e-01 3.14e-02 1.27e+00 2.29e-01 4.21e-03 2.62e-01
6.25e-02 1.10e-02 7.33e-01 1.09e-01 1.22e-03 1.32e-01
3.12e-02 3.80e-03 4.49e-01 5.20e-02 3.32e-04 6.66e-02

Table 5. Error rates for the regular case on the unit square domain.

h L2 − yrate H1 − yrate L2 − qrate L2 − zrate H1 − zrate

5.00e-01 0.00 0.00 0.00 0.00 0.00
2.50e-01 1.19 0.80 1.13 1.64 0.86
1.25e-01 1.43 0.83 1.08 1.72 0.95
6.25e-02 1.51 0.79 1.08 1.79 0.98
3.12e-02 1.53 0.71 1.06 1.87 0.99
expected 1.50 0.50 1.00 2.00 1.00
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Figure 5. Exact and computed control for the regular case on the unit square domain are
shown in green and red, respectively.

6.2.2. Numerical results for the advection-diffusion dominated case (h � ε where h is mesh size) on
the unit square domain

Since ε is too small for this case such as ε = 10−5, h|~β|
ε
> 1 which means the advection-diffusion

dominated case occurs. The norm of y depends on ε such that ‖ȳ‖Hk+1(Ω) ≤
C

εk+1/2 . Since the convergence
rate of q̄ depends on data of ȳ from the main result, we do not expect any convergence rate and so
this case does not contradict with our main result. Also, the feature of the method shows itself that
Dirichlet boundary condition is almost ignored by the method as a result of weak treatment and it does
not resolve the layers and causes oscillations on the boundary. It can be seen in Figure 6 and Tables
6 and 7 that some oscillatory solutions and non-convergent rate of q appear on the inflow boundary,
caused by non-stabilized terms of boundary edges E∂

h represented by E−h in the bilinear form (4.6) and
(4.5), whereas it is stable on both the interior edges E0

h and the stabilized boundary edges E∂
h by the

penalty term in the form.

Table 6. Error for the the advection-diffusion dominated case on the unit square domain.

h ‖ȳ − ȳh‖L2 ‖ȳ − ȳh‖H1 ‖q̄ − q̄h‖L2 ‖z̄ − z̄h‖L2 ‖z̄ − z̄h‖H1

5.00e-01 4.29e+00 2.68e+01 8.15e+00 5.66e+01 9.52e+02
2.50e-01 7.69e-01 1.32e+01 2.22e+00 1.51e+01 5.15e+02
1.25e-01 4.72e-01 1.58e+01 9.70e-01 3.85e+00 2.63e+02
6.25e-02 3.78e-01 2.36e+01 6.66e-01 9.64e-01 1.32e+02
3.12e-02 2.55e-01 2.88e+01 6.37e-01 2.40e-01 6.62e+01
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Table 7. Error rates for the the advection-diffusion dominated case on the unit square domain.

h L2 − yrate H1 − yrate L2 − qrate L2 − zrate H1 − zrate

5.00e-01 0.00 0.00 0.00 0.00 0.00
2.50e-01 2.48 1.02 1.87 1.91 0.89
1.25e-01 0.71 -0.26 1.20 1.97 0.97
6.25e-02 0.32 -0.58 0.54 2.00 0.99
3.12e-02 0.57 -0.28 0.06 2.01 1.00

Figure 6. Exact and computed control for the the advection-diffusion dominated case on the
unit square domain are shown in green and red, respectively.

6.3. Ω is a diamond shaped domain

By a transformation from the unit square domain to obtain a diamond shaped domain Ω with π
4 ,π8

and π
10 angles, while the angle of the domain is getting smaller, we expect that the error rate is getting

close to the predicted optimal error rate.

6.3.1. Numerical results for the regular case on the diamond shape domain with angles π/4, π/8 and
π/10

After the transformation from the unit square domain to obtain a diamond shaped domain Ω with
π
4 ,π8 and π

10 angles, we can observe from tables 8–10 that the regularity of the state is reducing sharply
close to 1 and that we will obtain the predicted rate i.e., ‖q̄ − q̄h‖L2(Γ) ≤ Ch1/2 yields ‖ȳ − ȳh‖L2(Ω) ≤ Ch1

by Theorem (5.7). There are many researches, see [6, 31, 46], which obtained an error estimate for the
optimal control of order depends on the largest angle of the boundary polygon. Also, we can see the
stable behavior of the method in Figures 7–9.
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Figure 7. Exact and computed control for the regular case with angle π/4 are shown in green
and red, respectively.

Figure 8. Exact and computed control for the regular case with angle π/8 are shown in green
and red, respectively.
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Figure 9. Exact and computed control for the regular case with angle π/10 are shown in
green and red, respectively.

Table 8. Error rates for the regular case with angle on the diamond shape domain with angle
π/4.

h L2 − yrate H1 − yrate L2 − qrate L2 − zrate H1 − zrate

5.00e-01 0.00 0.00 0.00 0.00 0.00
2.50e-01 1.51 0.80 0.65 1.43 1.78
1.25e-01 1.47 0.84 0.96 1.75 1.91
6.25e-02 1.69 0.85 1.05 1.89 1.96
3.12e-02 1.75 0.81 1.05 1.95 1.98
1.56e-02 1.73 0.74 1.03 1.97 1.99

Table 9. Error rates for the regular case with angle on the diamond shape domain with angle
π/8.

h L2 − yrate H1 − yrate L2 − qrate L2 − zrate H1 − zrate

5.00e-01 0.00 0.00 0.00 0.00 0.00
2.50e-01 1.75 0.72 0.32 1.11 0.76
1.25e-01 1.16 0.41 0.72 1.63 0.95
6.25e-02 1.60 0.50 0.97 1.88 0.99
3.12e-02 1.70 0.55 1.01 1.96 1.00
1.56e-02 1.66 0.53 1.02 1.99 1.00
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Table 10. Error rates for the regular case with angle on the diamond shape domain with angle
π/10.

h L2 − yrate H1 − yrate L2 − qrate L2 − zrate H1 − zrate

5.00e-01 0.00 0.00 0.00 0.00 0.00
2.50e-01 0.85 0.17 0.17 1.03 0.61
1.25e-01 0.92 0.17 1.59 1.60 1.04
6.25e-02 1.32 0.26 0.90 1.89 1.14
3.12e-02 1.50 0.42 1.00 1.98 1.10
1.56e-02 1.55 0.50 1.02 2.00 1.05

6.3.2. Numerical results for the advection-diffusion dominated case on the diamond shape domain
with angle π/4

While the method still works, likewise the frame in the unit square domain, it can be seen in
Figure 10 and Table 11 that some oscillatory solutions and non-convergent rate of q appear on the
inflow boundary whereas it is stable on the interior edges and the stabilized boundary edges as a result
of weak treatment because of not resolving the layers and causing oscillations on the boundary.

Figure 10. Exact and computed control for the advection-diffusion dominated case on the
diamond shape domain with angle π/4 are shown in green and red, respectively.

AIMS Mathematics Volume 7, Issue 4, 6711–6742.
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Table 11. Error rates for the the advection-diffusion dominated case on the diamond shape
domain with angle π/4.

h L2 − yrate H1 − yrate L2 − qrate L2 − zrate H1 − zrate

5.00e-01 0.00 0.00 0.00 0.00 0.00
2.50e-01 3.35 2.45 3.36 2.87 1.89
1.25e-01 0.31 0.23 1.41 2.96 1.97
6.25e-02 -0.01 -0.64 0.81 2.97 1.99
3.12e-02 0.01 -0.68 0.45 2.45 2.00

7. Conclusions

In this paper, we consider Dirichlet boundary optimal control problem governed by the advection-
diffusion equation and apply the DG methods to the problem. We show some attractive features of
the method such as the stable behavior of the SIPG method into the domain of the smoothness and
for the advection dominated case except on the boundary as a result of the boundary weak treatments.
We have proven that the convergence rate for the SIPG method is optimal in the interior of the general
convex domain. However, all convergence rates in numerical examples are higher than predicted by the
main result because the predicted order exists for general convex domain, but obtaining the predicted
optimal convergence rate depends on the maximal angle of the domain because of the regularity [6,36,
47], which is an interesting topic for future work. Also, for general polygonal domains and Laplace
equations it has been shown [6] that

‖q̄ − q̄h‖L2(Γ) ≤ Ch1− 1
p ,

where p > 2 depends on the largest angle, and obtaining optimal convergence rates for the p = 2 case
is another interesting topic for future work.
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