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1. Introduction
Oceans gather a significant amount of litter from terrestrial 
sources, and >65 percent comprises nondegradable 
macroplastics (Thushari and Senevirathna, 2020). Relative 
abundance of microplastics (MPs) belonging to different 
particle size classes and polymer types are emerging 
ecological concerns in the 21st century. The reported 
ubiquity in various environmental compartments has 
increased lately (Peng et al., 2017: Berlund et al., 2019; 
Baldwin et al., 2020; Atici et al., 2021). This is mainly due 
to their persistence against natural degradation. However, 
due to UV exposure and mechanical weathering, large 
plastic fragments break down to form MPs, which are 
classified as a secondary source of MPs. In addition, 
another MP source is microbeads in personal care products 
(toothpaste, shampoos, etc.) classified as primary sources 
(Peng et al., 2017; Baldwin et al., 2020; Yang et al., 2021). 
These plastic particles accumulated in the cities are mainly 
shaped by socioeconomic class and customer behaviors 
across the globe (Siegfried et al., 2017). 

As sessile, reasonably resistant to hazardous waste, 
and common in aquatic habitats across the world, the 
mussels are global biomarkers for their potential to detect 
the concentrations of chemical pollutants (Farrington et 
al., 2016). Although the freshwater bivalve studies in the 

area are rapidly developing (Berglund et al., 2019; Baldwin 
et al., 2020; Hoellein et al., 2021), in vivo MP ingestion 
by bivalves in the urban littoral zones has received little 
attention up to date (Hoellein and Rochman, 2021). MP’s 
origins, transport, and implications in freshwaters are 
still being discovered (Hoellein and Rochman, 2021). 
Few examples of Turkish inland water studies exist in the 
literature evaluating MP ingestion by fish (Atici et al., 2021) 
or MP concentration in fish species and the surrounding 
sediments (Turhan, 2022), frogs (Tatli et al., 2022) and 
freshwaters (Tavşanoğlu et al., 2020). 

The employment of bioindicator species, which 
measure biological and biochemical characteristics over 
time, can be used to investigate contaminants in aquatic 
environments. In addition, the sessile species are beneficial 
for chemical contaminant monitoring (Farrington et al., 
2016). Marine bivalves, for example, are one of the most 
reliable biological markers of aquatic contamination. 
However, there are inconsistent findings about the utility 
of bivalves as a reliable bioindicators for MP pollution (Su 
et al., 2018; Vescovi et al., 2009; Ward et al., 2019; Zhang 
et al., 2020; Hollein et al., 2022). The interaction between 
MPs and bivalves in Mediterranean mussels (Mytilus 
galloprovincialis) and Venus clam (Chamelea gallina) has 
been extensively studied in Turkish waters (Gedik and 
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Eryaşar, 2020; Gedik et al., 2022a; Gedik and Gözler, 
2022), yet, there is only one research study on spatial or 
temporal patterns of MPs in bivalves inhabiting freshwater 
ecosystems of Turkey (Atici, 2022). 

Plastics are derived and transported to the seas through 
freshwater habitats (Horton et al., 2017). However, there is 
no such program in Turkey as in the case of the US, for 
instance, that uses zebra and quagga mussels to monitor 
contaminants in the inland waters (Hoellein et al., 2021) 
regulated by North America’s Great Lakes Mussel Watch 
Program. Nevertheless, understanding the dynamics of 
plastic contamination in Turkish lacustrine necessitates 
sorting the source and fate of MPs and their interactions 
with mussels. Therefore, our aims were: (i) to determine 
MP abundance, spatial distribution, and characterization 
in naturally growing bivalves and their surrounding 
sediments in the lakes and (ii) to provide a baseline for 
future monitoring studies.

2. Materials and methods
2.1. Characteristics of the study areas and sampled 
mussels
Located within the borders of Ardahan and Kars cities, 
Lake Çıldır has a surface area of 123 km2 and is located at 
an elevation of 1959 m above sea level. The lake’s surface is 
covered with a layer of ice during winter. While many little 
streams and rainfall that falls directly on the lake’s surface 
provide the lake with water, there is only one stream to 
discharge the lake. Çıldır Lake, which was used as drinking 
water until recently, is now used for irrigation and energy 
production (Kükrer et al., 2014; Alkan et al., 2016).

Almus Dam Lake, located on the Yeşilırmak in Almus 
District of Tokat Province, was built for energy production, 
irrigation of agricultural areas, and flood control. In  
Almus Dam Lake, which has a surface area of 31.30 km2, 
fish production facilities continue their activities (Buhan 
et al., 2010; Polat and Ozmen, 2011).

Kartalkaya Dam was built on the Aksu River to irrigate 
agricultural lands and supply drinking water. Although 
Kartalkaya Dam has a surface area of 10.25 km2, there is 
a population of more than 100,000 in its basin in which 
intense agriculture and animal husbandry activities are 
carried out (Yücel et al., 2013; Özonat, 2017).
2.2. Mussel and sediment sampling
Mussel and sediments were sampled from Almus Dam 
Lake (ADL) and Kartalkaya Dam Lake (KDM) in October 
2021 and Çıldır Lake (ÇL) in June 2021 by either free 
diving or scuba diving between depths of 0.5–3 m (Figure 
1). Sediment sampling was carried out in triplicate. 
Sediment samples (approximately 2 kg) were taken from 
the sediment surface (top 5 cm) with a shovel. Dreissena 
polymorpha from ADL, Unio damescensis from KDL, and 
Anodonta sp. and D. polymorpha samples were collected 

from ÇL. The number of bivalves sampled from the lakes 
is given in Table 1. Packed in an aluminum foil bowl and 
transported to the lab via a cold chain, the samples were 
stored at –20 °C in a refrigerator.
2.3. Microplastics extraction from mussel samples
After allowing the samples to thaw at room temperature 
(RT), they were rinsed with deionized (DI) water. Then, the 
length and weight of the mussels were measured (Table 1). 
Following, mussels’ soft tissues were removed and placed 
in the glass flasks. Soft tissue pools were made using three 
separate samples of mussels with identical weights and 
lengths in each flask. For each station, five soft tissue pools 
were used (n = 5 replicates). In addition, at each station, 
two flasks with no tissue samples were utilized as blanks. 
All tissue samples were placed in aluminum foil-covered 
flasks with about 200 mL of H2O2 (30% Sigma Aldrich) 
and were incubated at 65 °C for 3 days manual shaking 
twice a day. After the incubation phase, the flasks were 
left out overnight (o/n) to enable them to reach RT. After 
vacuum filtering the samples, the flasks and glass funnel 
were rinsed with filtrated DI water to get materials off 
the side of the glass.  To ensure a better visual inspection, 
multiple GF/C filters were used, depending on the quantity 
of the particles. For additional microscopic examination, 
each filter was kept in a separate, clean petri dish (Gedik 
and Eryaşar, 2020; Gedik et al., 2022ab; Gedik and Gözler, 
2022). 
2.4. Microplastic extraction from sediment samples
MPs were extracted from lake sediments using the density 
separation technique adopted from Hidalgo-Ruz et al. 
(2012). Sediments were dried for 48 h at 60 °C. The beakers 
were filled with a 500 mL volume of supersaturated ZnCl2 
(1.65 g cm–3) after the transfer of 100 gr subsamples from 
each sediment sample. A glass stirring stick was used to 
mix the contents for 2 min. For around 4 h, the samples 
were allowed to settle down. A vacuum pump with a glass 
pipe was used to collect the supernatants, which were then 
filtered through a piece of plankton net used as a filter with 
a pore size of 25 µm. The plankton nets were rinsed with 
filtered DI water to get particles off the net and transferred 
into the new beakers. The whole procedure was performed 
three times using the initial sediment sample beaker to 
enhance the extraction of MPs from the samples. To digest 
the organic compounds in the new beaker containing 
particles extracted from the sediment samples, a 50 mL 
(30%) H2O2 solution was poured into the aluminum foil-
sealed beakers to prevent air interference. The contents of 
the beakers were filtered using Whatman GF/C (47 mm 
diameter, 1.2 µm pore size filters) after digestion at 65 
°C for 24 h. The filters were kept in glass petri dishes. In 
some cases, multiple filter papers were utilized to speed 
up microscopic observation due to the large number of 
particles in specific samples. 
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2.5. Inspection and validation of the microplastic 
particles
Fluorescent staining is a faster and easier method for 
MP detection, rather than the combination of visual 
identification (Lusher et al., 2020) and the hot needle (De 
Witte et al., 2014) technique. One of the dyes used for this 
purpose is Nile red (NR) which several researchers have 
applied, and MPs have been detected successfully (Maes et 
al., 2017; Gedik et al., 2022b; Shruti et al., 2022). Therefore, 
NR was used in the filters in which the particles extracted 
from the sediment samples were collected in this study. 
NR (Sigma-Aldrich 72485) solution (1 mg mL–1), the most 

used concentration in the literature (Shruti et al., 2022), 
was dissolved in the acetone, then filtered by a 0.22 μm 
PTFE stored in an amber bottle at +4 °C. A portion of the 
prepared solution was taken with a glass Pasteur pipette; 
a few drops were poured onto the filter to be examined 
(ensuring that the entire filter surface was wetted). An 
incubation period (approximately 30 min) was applied for 
the polymers to adsorb NR and the NR-stained filter papers 
to dry (Shruti et al., 2022). The filters were then inspected 
using a fluorescence microscope (Euromex oxion, filter set 
for blue excitation EX 465–495 nm DM 505 nm EM 515–
558 nm, filter set for green excitation EX 540–580 nm DM 

Figure 1. Sampling area. Red circles represent the locations of the lakes where sediments and mussels were collected.

Table 1. Morphometric characteristics of the bivalve sampled from different lakes.

Sampling 
location Sampling species N L 

(cm)
BW 
(g)

FW
(g)

Çıldır Lake Dreissena polymorpha 36 2.64 ± 0.44 2.87 ± 1.14 0.96 ± 0.53
Anodonta sp. 20 9.33 ± 1.20 43.60 ± 13.47 19.92 ± 7.39

Almus Dam Lake Dreissena polymorpha 18 3.44 ± 0.05 2.05 ± 0.16 0.51 ± 0.01
Kartalkaya Dam Lake Unio damescensis 16 7.92 ± 0.62 38.97 ± 6.72 12.97 ± 2.72

L: length, BW: total body weight, FW: soft tissue fresh weight. Results were given as average ± standard deviations.
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600 nm EM 605–665 nm). In biological samples, Nile red 
can also cause the MP overestimations calculated by dyeing 
undigested residues such as lipids and organic compounds 
that are not entirely broken down during digestion (Kang 
et al., 2020; Prata et al., 2021). For this reason, the filters 
obtained after the digestion of mussel samples were 
directly examined under the stereomicroscope. All the 
particles suspected to be MP were picked up by tweezers 
and placed into new filters. Using a digital camera, each 
particle from filters used for sediment and mussel samples 
was photographed, numbered, measured, and classed 
by fiber, foam, fragment, film, or pellet shape (Figure 2). 
Polymer identification was carried out with the help of 
an attenuated total reflection Fourier transform infrared 
spectrometer (PerkinElmer, FTIR) throughout a spectrum 
range of 4000–650 cm–1, with 18 repeat scans (n) at 
resolutions of 4 cm–1. The obtained data were compared 
to the library data from the Perkin Elmer instrument, and 
MPs were classified as particles that matched >70 percent 
of the cases (Figure 2) (Gedik and Eryaşar, 2020; Gedik et 
al., 2022ab). ATR-FTIR was used to evaluate 122 particles, 
of which 32 were separated from sediment samples, 
and 90 belonged to bivalve samples. Since the particles 
isolated from sediment samples were treated with Nile 
red, 32 particles among these were evaluated with FTIR by 
subsampling only the fluorescent particles, as opposed to 
all of the particles recovered from bivalve samples, which 
were all FTIR analyzed.

2.6. Contamination control and data quality 
All processes were carried out in a clean and contamination-
regulated setting. During the operations, linen gloves and 
lab coats were used. GFC filters (47 mm, 1.2 mm) were 
also used to prefilter all liquids used in the procedures. All 
assay glassware were cleaned with filtered DI before being 
covered with DI water-treated aluminum wrap. Washed 
petri dishes filled with filtered DI water were used as blank 
petri dishes and placed close to the instrument to check for 
contamination from the air during the visual check. The 
airborne contamination test detected only fiber particles 
from clothes in blank petri dishes. If there was a MP in 
these, the data was obtained by subtracting that from the 
total MP value of the series (Gedik et al., 2022ab).

The percent recovery efficiency of the MP extraction 
was measured using five different polymers with spiking 
methods by PE, PP, PA, PS, and PET particles to test the 
recovery. The gaining procedure of the spiking polymers 
was disclosed in Gedik et al. (2022). The MPs prepared 
for spiking were added to the blank glass flasks containing 
H2O2 (200 mL), which then received the same processes as 
those valid for the sediment samples. After filtration, the 
percent recoveries for PET, PE, PP, PS, and PA were 96%, 
94%, 93%, 97%, and 92%, respectively.
2.7. Statistics
For mussels, data were expressed as MP individual 
(indiv.)–1, MP fresh weight (fw)–1, and MP kg–1 dry weight 
for sediment. Kruskal–Wallis and Mann–Whitney U tests 

Figure 2. Evaluation of the extracted microplastics (MPs) from sediments and mussels. a) 
Appearance of MPs under a fluorescence microscope using Nile Red fluorescent dye, b) 
FTIR spectrums of MPs, and c) appearance of MPs under a stereo microscope.
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were used to investigate any differences in MP abundance 
variability among different bivalves and sediments 
collected from different lakes. The significance interval 
was set at 0.05, and the software JMP 14.1.0 was used (SAS 
Institute Inc.).

3. Results 
3.1. MP characterization
MPs were found in sediment and bivalve samples from all 
the lakes. ATR-FTIR analysis was performed on a total of 
122 particles (Figure 2), of which 100 (82%) were MPs. 
The non-MPs were primarily composed of cellulose and 
other particles (which were not counted as MPs since they 
showed less than a 70% match). 
3.1.1. Shapes
Three different types of MP (fiber, fragment, and film) 
were detected in the sediment and bivalve samples (Figure 
3). While fragments were dominant (54%) in sediment 
samples, fibers (85%) were more prevalent in bivalves. Only 
fiber-type MPs were found in  Almus Dam Lake sediments 
when the MPs obtained were classified according to 
their morphologies (Figure 4). While fragment (53.3%), 
followed by fiber (33.3%) and film (13.3%) in Lake Çıldır, 
the order of fragment (63.6%), followed by fiber (27.3%) 
and film (9.1%) was observed in Kartalkaya DL. When the 
shapes of MPs in bivalves were examined (Figure 5), 90% 
fiber, 8% fragment, and 2% film were found in Anodonta 
sp. sampled in the Lake Çıldır, while 100% of MPs were 
determined as fiber in D. polymorpha. There was 100% 
fiber in D. polymorpha sampled in Almus DL, while 45% 
of the MPs were found to be fiber, 45% to fragment, and 
9% to film in the U. damescensis samples collected from 
Kartalkaya DL.
3.1.2. Polymer types
Four distinct polymer types were discovered in the sediment 
and bivalve samples (polyethylene, PE; polyamide, PA; 
polypropylene, PP; polyethylene terephthalate, PET) 
(Figure 3). PET was the dominant polymer type in 
sediment and bivalve samples. The polymer type amounts 
in the sediment and bivalves were as follows: PET (51%) 
> PP (29%) > PE (17%) > PA (3%) for sediments and PET 
(36%) > PP (32%) > PE (21%) > PA (11%) for bivalves 
(Figure 3).

According to their abundance in the sediment samples, 
the following polymer types were classified: PET (33.3%) 
> PE (26.7%) = PP (26.7%) > PA (13.3%) in Çıldır Lake, 
PET (50%) = PP (50%) in Almus DL, and PET (36.4%) = 
PP (36.4%) > PE (18.1%) > PA (9.1%) in Kartalkaya DL 
(Figure 4). Considering the MPs polymer types in bivalves 
(Figure 5), 50% PET, 35% PP, 13% PE, and 2% PA were 
detected for Anodonta sp. sampled from Çıldır Lake, 
while 60% PET, 20% PP, and 20% PE were determined for 

D. polymorpha. A hundred percent PET was detected in 
D. polymorpha, collected in Almus DL. Conversely, 36% 
PET, 36% PE, 19% PP, and 8% PA were detected in U. 
damescensis (Figure 5).
3.1.3. Sizes
Figure 3 shows a histogram of the size variations of the 
detected MPs. The MPs found in the bivalve were on 
average 611 μm, ranging from 107 to 2967 μm. The majority 
of the MPs were found in the smallest class fraction (<500 
μm), as indicated in the histogram in Figure 3. The mean 
of the MP length in sediment samples was estimated to be 
1572 ± 1400 μm, with all MP lengths ranging from 57 to 
4693 μm. <500 μm was the most typical size group (58%).
3.2. MP abundance in the sediments
MP distribution in sediment samples was 19 to 156 MP 
kg–1. MP abundance in the sediment of the lakes was as 
follows: Kartalkaya Dam Lake (122 MPs kg–1) > Çıldır 

Figure 3. Characterization of microplastics (MPs) obtained from 
sediments and mussel samples. The upper panel is the shape, the 
middle is the polymer type, and the lower panel is the MPs’ size.
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Lake (83 MPs kg–1) > Almus Dam Lake (31 MP kg–1). 
Kruskal–Wallis test was used to assess the MP abundance 
among sediments sampled from different lakes, revealing 
significant differences between the lakes (p < 0.05; Figure 
4).
3.3. MP abundance in bivalves
The MP distribution measured for bivalves in the lakes 
ranged from 0.17 to 10.00 MP indiv.−1 and 0.03 to 0.77 
MP g−1 fw. When MP distribution in bivalves sampled 
from different lakes is examined (Figure 5), Anodonta sp. 
sampled in Lake Çıldır was 0.75–10 MP indiv.−1, 0.03–0.41 
MP g−1 fw; and D. polymorpha was 0.17–1.00 MP indiv.−1, 
0.12–0.77 MP g−1 fw. D. polymorpha sampled in Almus 
DL was 0.16–0.17 MP indiv.−1, 0.32–0.33 MP g−1 fw, while 
0.50–2.50 indiv.−1 and 0.03–0.19 MP g−1 fw were detected 
in the U. damescensis sampled from Kartalkaya DL. The 
MP abundance in bivalves from different lakes showed 
statistically significant differences (Kruskal–Wallis test, p 
< 0.05).

4. Discussion
The aquatic ecosystem is under the pressure of various 
anthropogenic pollutants caused by industrial, urban, and 
agricultural activities (Vescovi et al., 2009; Hamza-Chaffai, 
2014; Premalatha et al., 2020). Bioindicators that play a 
crucial role in assessing pollution levels and ecological 
hazards of contaminants are markers of this pressure 
in aquatic ecosystems (Su et al., 2018). Bivalves are 
useful sessile species that display the amounts of various 
contaminants in the environment among invertebrates 
(Boening, 1999; Su et al., 2018). In freshwater ecosystems, 

Figure 5. Microplastic abundance (per individual and g soft 
tissue fresh / wet weight) (a), polymer characterization (b), 
and shape (c) of microplastics collected from bivalve samples 
from three lakes. Different capitals (A, B, C) show significant 
differences among sampling stations. Different letters (a and b) 
show significant differences among bivalve species.

Figure 4. Abundance (a), polymer characterization (b), and 
shape (c) of microplastics collected from sediment samples from 
three lakes.
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the necessity of examining the interactions of bivalves with 
microplastics, which exhibit major effects on ecosystem 
processes (Vaughn and Hoellein, 2018), such as water cycle 
and nutrient availability, is emphasized in the literature 
(Wardlaw and Prosser, 2020; Hoellein and Rochman, 
2021; Hoellein et al., 2021). Therefore, monitoring MP 
contamination in our freshwater ecosystems might be 
essential. Thus, the MP abundance and characterization in 
sediments and bivalve (Anodonta sp., D. polymorpha, and 
U. damescensis) samples collected from Almus Dam Lake, 
Kartalkaya Dam Lake, and Çıldır Lake in Turkey were 
investigated in this work. 
4.1. MP characterization
No municipal wastewater is discharged into the lake 
basin of Kartalkaya Dam Lake since drinking water is 
provided there (KBHKP, 2019). However, according to 
AÇDR (2020) and TÇDR (2020), there is no treatment 
for municipal discharge waters in Çıldır Lake and Almus 
Dam Lake. Direct or surface runoff is the two ways that 
pollutants enter the lake. According to Vardar et al. (2021), 
MPs predominated as fibers in municipal discharge 
waters. The intense presence of fiber in bivalves (Figure 5) 
may indicate that the pollution originates from municipal 
wastewater. Accordingly, Browne et al. (2011) reported 
that at least 1900 synthetic fiber particles are discharged 
together with wastewater in each washing machine use. In 
addition, it is thought that another source may come from 
synthetic equipment such as nets used in fishing (Andrady, 
2011; Peng et al., 2017), because fishing or aquacultural 
production activities have been conducted in the lakes of 
Almus and Çıldır where the sampling was made (Buhan et 
al., 2010; Zengin et al., 2012). 

The MP sizes detected in sediments and bivalves were 
predominantly <500 µm (Figure 3). Therefore, municipal 
discharge waters can be thought as a probable source of 
MP in mussel and sediment samples. De Falko et al. (2018) 
also reported that the length of the microfibers released 
with the washing of synthetic textiles is <500 µm. In the 
same study, De Falko et al. (2018) determined that more 
than 6 million microfibers were mixed into the wastewater 
due to washing 5 kg of synthetic fabric. 

MPs detected in all samples were predominantly PET 
(36%–51%), PP (29%–32%), and PE (17%–21%) (Figure 
3). The most produced polymer types in Europe are PE 
and PP, which are used to manufacture many plastic 
materials we use daily (Plastic Europe, 2020). Although 
PET, used extensively in beverage bottles and synthetic 
clothing fabrics, is produced less (Plastic Europe, 2020), 
it was more abundant in the sampling media due to 
municipal discharges. Accordingly, thousands of fiber 
MPs are released into wastewater while washing garments, 
according to Browne et al. (2011) and De Falko et al. 
(2018).

4.2. MP abundance in sediments
Microplastics accumulate substantially in the sediment, 
much like other contaminants (Belasi et al., 2020; Yang 
et al., 2021). The accumulation of MPs in the sediments 
of lakes can vary according to several factors such as the 
residence time of the water, surface area, MP density, 
MP composition, amount and number of municipal 
discharges, etc. (Corcoran et al., 2015; Eerkes-Medrano et 
al., 2015). Figure 4 depicts the number and distribution 
of MPs in the collected sediments from the research 
area. MP abundance in the sediments showed significant 
differences (Figure 4) among the lakes. These differences 
might be due to the urbanization, population density, 
and anthropogenic activities in the lake basin, as there is 
a link between these variables and MP contamination in 
lakes (Bellasi et al., 2020; Dusaucy et al., 2021; Yang et al., 
2022). We suggest that MP density is high in Kartalkaya 
Dam Lake basin due to a higher population density than 
in other lakes and the intense livestock and agricultural 
activities (Yücel et al., 2013; Özonat, 2017). Çıldır Lake is 
also subject to anthropogenic activities, including fishing 
activities (Zengin et al., 2012) and municipal discharges 
given directly to the lake via rivers (Kükrer et al., 2014; 
Alkan et al., 2016). In terms of MP abundance, polymer 
type, and MP shape variety, the results show that Almus 
Dam Lake is more uniform than other lakes. Considering 
that MP abundance is related to anthropogenic activities, 
it can be concluded that Almus Dam Lake was less affected 
than other lakes.

To estimate the MP contamination levels of the 
sediments, the MP concentrations detected were 
compared with the research conducted in the other lakes 
in Turkey and around the world. Turhan (2022) performed 
a study in Sürgü Dam Lake (Turkey), and MP abundance 
was reported as 760–1440 MP m–2. However, because 
our data were in MP kg-1, a comparison with this study 
was impossible due to the unit discrepancy. The amount 
of MP detected in the sediments sampled from lakes 
by researchers worldwide is 0.7–7707 MP kg–1, and the 
median value is 385 MP kg–1 (Dusaucy et al., 2021). The 
median value (83 MP kg–1) we determined in our study is 
lower than the median value defined worldwide by various 
researchers in studies carried out on different continents. 
For instance, the median value in Lake Ulansuhai in China 
was 14–24 MP kg–1 (Qin et al., 2020), 0.77–0.92 MP kg–1 
in Lake Tisza-tó, Hungary (Bordós et al., 2019), and 40 
MP kg–1 in Lake Ziway, Ethiopia (Merga et al., 2020). On 
the contrary, studies conducted in rural and urban lakes 
of China detected 180–693 MP kg–1 (Yin et al., 2020), 
250–300 MP kg–1 (Vaughan et al., 2017) in Edgbaston Pool 
(UK), 32.9–6229 MP kg–1 (Lenaker et al., 2019) in Lake 
Michigan (USA) and 1079.3 MP kg–1 (Oni et al., 2020) in 
Lake Ox Bow (Nigeria) which have obtained higher values 
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than ours. The differences between regions may be due 
to the differences in contamination levels as well as MP 
analysis procedure differences such as sampling, extraction 
of microplastics, filter pore diameter, FTIR verification, 
and contamination.
4.3. MP abundance in bivalves
The bivalves have been frequently used for monitoring MP 
pollution in aquatic systems (Li et al., 2019). Generally, 
in addition to the studies carried out in the marine 
environment (Gedik and Eryaşar, 2020; Gedik and Gözler, 
2020; Gedik et al., 2022), they have also been used in 
freshwater systems (Hoellein et al., 2021; Pastorino et al., 
2021). However, in studies conducted in Turkish lakes, 
MP was generally detected in water (Çomaklı et al., 2020; 
Erdoğan, 2020; Tavsanoğlu et al., 2020) and fish sampled 
in Lake Van (Atıcı et al., 2021). Bivalves have only been 
the subject of one study undertaken by Atici (2022), who 
sampled Unio stevenianus from the Karasu River, which 
drains into Van Lake, and analyzed MPs. In this study, 
MP characterization was performed in three different 
types of bivalve samples sampled from three different 
lakes in Turkey. Bivalve MP abundances from several 
lakes revealed statistically significant variations (Kruskal–
Wallis test, p < 0.05, Figure 5). As is well known, bivalves 
are filtration feeders, meaning they get their food by 
filtering the water (Li et al., 2019). These differences in 
MP concentrations detected in bivalves may be simply 
due to the MP concentration differences in the waters 
of the lakes where they were sampled. The study did not 
include any water sampling; however, MP assessments 
were conducted in sediment samples, which are the main 
reservoir of contaminants. MP variations in bivalves were 
also detected in sediment samples (Figure 4). Based on 
this, it can be said that the lakes have different amounts 
of MP contamination. However, the MP concentration 
in their environment is not the only factor affecting MP 
accumulation in bivalves. Bivalve size can also be counted 
among these factors. Sampled bivalves were ordered 
according to their size (Table 1), as Anadonta sp. > U. 
damescensis > D. polymorpha. This ranking aligns with the 
MP concentration array detected in bivalve species (Figure 
5). In Çıldır Lake, where two distinct species of bivalves 
were sampled, we can deduce that size is a significant 
component. Although tested from the same environment, 
the MP detected in Anodonta sp. was significantly higher 
than the amount of MP detected in D. polymorpha. (Figure 
5, Mann–Whitney U test, p < 0.05).

Bivalves have also been observed to ingest fibers more 
readily than MPs of other forms (spheres, fragments, etc.) 
(Ward et al., 2019). For these reasons, our study overlaps 
with the literature data, in which we detected more fibers 
in bivalves. Similarly, MPs detected in bivalves sampled 
from the lakes were predominantly fiber (Hoellein et al., 
2021; Pastorino et al., 2021).

The fact that bigger mussels filter more water and 
gather more MP in their bodies explains the phenomenon 
(Gedik and Eryaşar, 2020). Different researchers have also 
examined the relationship between bivalve size and MP 
accumulation, and some found a significant relationship 
between size and MP accumulation (Bråte et al., 2018; 
Berglund et al., 2019), while others did not (Phuong et al. 
al., 2018; Scott et al., 2019).

In the literature, just a few studies looked at the MP 
distribution in bivalves sampled from freshwater systems. 
When the MP values obtained in the bivalves tested in our 
study were compared with the lake studies in the literature, 
values show similarity with the studies conducted in 
Northern Italy (Pastorino et al., 2021) and Taihu Lake 
(Corbicula fluminea), China (Su et al., 2016). Yet, in the 
Great Lakes, USA study, the MP abundance detected in 
D. polymorpha (Hoellein et al., 2021) was higher than 
the values obtained here. In the study conducted in the 
Karasu River (Turkey), the amount of MP detected in Unio 
stevenianus was reported to be 39.15 ± 16.95 per individual 
and 2.85 ± 1.27 per g fw–1 (Atici, 2022). These values were 
higher than the values in our study.
4.4. Are mussels a good indicator of microplastic?
Bioindicators are species or groups of species that reflect 
the degree of abiotic and biotic contamination in the 
ecosystem, according to Hadkinson and Jackson (2005). 
Filtration-fed organisms have a significant capacity to 
absorb pollutants from their environment (Jara-Marini 
et al., 2013; Su et al., 2018). While bivalves are also good 
bioindicator species for monitoring MPs reported by 
several researchers (Vescovi et al., 2009; Su et al., 2018, 
Zhang et al., 2020), other studies suggest otherwise. 
Ward et al. (2019) exposed bivalves to microspheres and 
microfibers of various sizes in their experimental work. 
The study revealed that the ingest ratio reduced as the size 
of the microspheres rose and that ingesting microfibers 
of any size was possible. Furthermore, they claimed 
that bivalves were poor bioindicators. In another work, 
Hoellein et al. (2021) did not recommend that mussels can 
be used as a bioindicator for MP monitoring. The results 
of our study were corroborated with the reports by Ward 
et al. (2019) and Hollein et al. (2021), confirming that 
mussels are not good bioindicators as MPs detected in the 
bivalves were predominantly fiber (85%), while MPs in the 
sediment samples were fragments (Figure 3). Similarly, the 
ratios of polymer types also differed (Figures 3–5). While 
more than half of the particles were PET in bivalves, a more 
homogeneous distribution was found in the sediments 
(Figure 3). Additionally, there was a noticeable variation in 
MP sizes (Figure 3). While the majority of the MP lengths 
found in bivalves were below 500 µm, a more homogenous 
distribution was observed in the sediments (Figure 3). 
Organisms must intake the majority of the plastic particles 
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they are exposed to be used as bioindicators in monitoring 
MP pollution, according to Ward et al. (2019). Our study 
findings align with the literature indicating that bivalves are 
not good biodindicators for MP pollution (the ones which 
mainly were fiber and < 500 µm) in the environment. This 
makes it possible to claim that bivalves are a poor choice of 
bioindicator for MP monitoring.
4.5. Human health
Seafood is a food group widely preferred by people across 
the world. However, with the increasing population and 
pollution of water resources, seafood is also contaminated 
with various pollutants. One of these pollutants is MPs 
(GESAMP, 2019). Many researchers have studied MP 
ingestion by seafood species; however, the majority of these 
have been conducted on marine organisms, including fish 
and bivalves (Bråte et al., 2018; Phuong et al., 2018; Scott 
et al., 2019; Gedik and Eryaşar, 2020; Eryaşar et al., 2022). 
Since all the soft tissue of the mussels is consumed among 
these species, the pollutants in the tissues are directly 
transmitted to humans. Researchers have determined 
the abundance of MPs in the mussel tissue intensively 
and calculated how much MP can be reached in humans 
with consumption rates (Van Cauwenberghe and Janssen, 
2014; Catarino et al., 2018). As mentioned earlier, these 
studies were generally conducted on marine species. 
Studies in our country have also mainly been carried 
out on commercial species collected from the sea (Gedik 
and Eryaşar, 2020; Gedik et al., 2022; Gedik and Gözler, 
2022). According to these studies, a weekly serving of 
225 g (EFSA 2016) contains 52 MPs from Mediterranean 
mussel, 166 MPs from Camelia gallina, and 252 MPs from 
Mediterranean mussel, respectively. Although 42 different 
types of bivalves are detected today in our inland waters 
(Gürlek et al., 2019; Lopes-Lima et al., 2021), there is no 
data based on production, trade, or consumption, and 
MP contamination. Bivalves, Anodonta sp., and Unio 
damescensis in particular (size and fresh weight, Table 1) 
found in inland waters might now serve as a substitute food 
source in the struggle against food crisis. If one serving 
(225 g EFSA, 2016) of the specified species Anodonta sp. 

and Unio damescensis is consumed each week, one may be 
exposed to 38 and 15 MPs, respectively. These estimated 
levels are significantly less than the MP exposure that 
would result from consuming the aforementioned marine 
species. Mohammed Nor et al. (2021) calculated that 
the median value of MP taken by adults from 9 different 
media (tap water, air, mollusk, salt, milk, etc.) daily was 
833. Another study calculated that individuals in the USA 
received an average of approximately 260 MPs per day 
(Cox et al., 2019). The ratio of MP taken from bivalves to 
the overall quantity of MP taken daily was calculated to 
range between 0.4% and 2.3% when the values we found 
in our study were compared to the amount of MP taken 
daily. Since the tolerated daily intake (TDI) for plastics 
has not yet been established, a valid comparison to a limit 
value cannot be made. Since the TDI values of some of the 
additives (for example, bisphenol A: 4 μg/kg bw/day EFSA, 
2016) have been declared to date, future work might look 
into the relationship between MP and additives in bivalves. 

4. Conclusion
In conclusion, MPs in different shapes and polymer types 
were detected in the lakes’ sediments and bivalves where 
the sampling was performed.  In this study, based on the 
MP’s shape, type, and size, it is reasonable to indicate 
municipal discharge waters as a probable source of MP in 
the lakes. Furthermore, the gradual increase in sea bivalve 
production may also increase our country’s inland water 
production potential. Therefore, continual contamination 
monitoring of bivalves used as human food will be 
beneficial.
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