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Oil-type transformers (OTT) are used more than dry-type transformers, based on cost in the transmission
and distribution of electrical energy. Therefore, this usage density increases the importance of cost in
OTT. Weight is important in transformer cost. The weight of the transformers depends on the variable
parameters of the weights of the core and windings, C (iron cross section conformity factor) and s (cur-
rent density), respectively. In this study, unlike the previous heuristic optimization studies, an innovative
and complementary optimum weight was obtained by using the Gray Wolf - Whale Optimization hybrid
algorithm for both distribution type and power transformer type OTT. A weight reduction of 44% and
approximately 14% in power transformers was achieved. It was determined that this decrease in weights
provided the same reduction in OTT costs. The comparison test of the study was performed both with the
values of other algorithms and statistically.
� 2023 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Power and distribution OTTs are static system machines that
decrease and increase the voltage level of the generated electricity
without changing the power and frequency values.

Transformers are divided into many subclasses based on their
different characteristics. Power and distribution transformers that
are widely used in industry are oil type transformers and dry type
transformers based on the type of cooling. OTT transformers
shown in Fig. 1 are more in number as they are more economical
than dry type transformers among the distribution and power
transformer types. This has caused OTTs to be included in many
studies in every aspect in the literature. Studies have been con-
ducted on operating systems, fault detections, optimization of
these electrical machines. OTT design optimization is the detailed
calculation of transformer component characteristics based on pre-
scribed specifications, using available materials economically to
achieve lower cost, lower weight, reduced size, and improved oper-
ating performance [1]. In these optimization studies, results were
obtained by using meta-heuristic algorithms, taking into account
the constraints for certain purposes. The heuristic algorithms such
as Genetic Algorithm (GA), which is one of the most well-known
algorithms [2], Partial Swarm Optimization (PSO) [3], Ant Colony
Algorithm (ACA) [4], Artificial Bee Colony (ABC) Algorithm [5], Fire-
fly Algorithm (FA) [6],Simulated Annealing (SA) [7], Gravitational
Search (GSA) [8] have been included in many studies to adapt
designs, costs and weight optimization of transformers.

From these studies, it was determined that the weight of a dry-
type distribution transformer was reduced by using the optimal
value variable parameters in the study using genetic algorithm
[10]. Similarly, genetic algorithm optimization was developed by
using variable parameters s and C to optimize the weight of oil-
filled distribution transformers [11]. In another study using parti-
cle swarm optimization, a distribution type dry type transformer
weight was optimized with the same variable parameters [12].
Optimal values were obtained by using artificial neural networks
in dry-type transformer design [13] In dry-type transformer, better
results were obtained with firefly algorithm, one of the current
heuristic algorithms, and better weight optimization compared to
previous algorithms [14] micro genetics for optimal design trans-
former optimization studies with an algorithm-based design also
included positive results [15].

In addition to these studies, Gray Wolf Optimization (GWO)
[16], which is a part of the hybrid algorithm developed in 2014
and applied in this article, is also included in transformer design
optimization.

GWO is good at reaching optimum parameters in less iterations
in both dynamic and static operating conditions, and the time
response is fast in systems where it is applied.

In these features, an improved hybrid GWO is proposed to
increase the performance of support vector machine used in trans-
former fault diagnosis [17].
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Fig. 1. Internal Structure of Oil Type Transformer [9].
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In another study dealing with power loss and weight reduction
in transformers, it was investigated that GWO provided 3.76%
reduction in 1000 kVA transformer weight in optimization with
heuristic algorithms [18].

Likewise, a part of the hybrid algorithm, the Whale Optimiza-
tion Algorithm (WOA) [19] which was developed in 2016, has an
efficient, virtuous global search capability, slow but highly accu-
rate convergence performance in solving real-world optimization
problems.

In transformer optimization studies using WOA, it was deter-
mined that, similar to GWO, a hybrid structure was created with
genetic algorithm by using support vector machine optimization
used in transformer fault diagnosis, and fault diagnosis results
were realized by 94.05% and the margin of error was reduced by
5% [20]. In a different study, WOA was used in transformer fault
diagnosis with an extreme learning machine and it was deter-
mined that it could increase fault diagnosis efficiency by optimiz-
ing power transformers [21].

Furthermore, heuristic optimization algorithms such as FA, ABC,
GWO, WOA etc., recently created in the field of transformers, are
utilized for solving a variety of issues in electrical-electronics, com-
puter, and mechanical engineering.

GWO has been used to increase the performance of an opti-
mized model of hybrid kernel function relevance vector machine
(HKRVM) for battery prognostics and health management [22],
solve problems related to load frequency control in high scale
power systems [23], reconfigure the control circuit designed to
keep the four-layer chopper placed on the DC connection of the
variable speed drive system (VSDS) under control and has yielded
better results than previous methods and practices used in the sys-
tem [24].

WOA has been used in optimization studies that provide greater
accuracy and reliability to the global values of the values obtained
in the stability analysis of power systems [25]. In addition to this
study, WOA found positive results in finding electric vehicle charg-
ing stations with service capacity, and that it was effective for prac-
tical positioning, planning projects and reducing social costs [26].

These heuristic algorithms have been created in hybrid struc-
tures through different algorithms that can work in harmony, con-
sidering their features. With these hybrid algorithm applications, it
is aimed to obtain better results than the studies in which the algo-
rithms are applied separately

Based on research that complements this hybridization, the
drilling process using a cryogenically treated drill bit on Inconel
718 super alloy was used in the optimization of the parameters
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to be used in obtaining minimum surface roughness as well as
maximizing the torque and thrust force during the drilling process
and provided better results to the systems compared to their cur-
rent conditions [27].

In addition, in order to obtain the best values in the optimiza-
tion of the systems, studies have been carried out in the definition
of facial emotions with the hybridization of the developed whale
algorithm and the Teaching-learning-based algorithm in recent
years [28]. For static and dynamic crack identification, PSO and
gray wolf hybrid algorithms produced optimal results [29]. In a dif-
ferent hybrid study, the genetic algorithm and the worm algorithm
obtained values that could obtain more optimal peak values in PV
systems [30]. The modified gray wolf algorithm and the cuckoo
search algorithm provided optimization in low-frequency con-
troller design [31].

When the gray wolf algorithm is hybridized through the bee
algorithm, a unique algorithm providing general optimization has
been created [32]. Workplace scheduling problems were optimally
solved through the whale and Levy flight application with a similar
optimization application [33].

The hybrid Gray wolf-whale optimization algorithm mentioned
in this article is used in several investigations, In the cloud task
scheduling problem, it was aimed to benefit from the advantages
of both algorithms in order to minimize the costs, energy con-
sumption and the total execution time required for the task imple-
mentation, as well as to improve the resource usage, and an
improvement was achieved.[34].

Another study, investigated if the hybrid GWO-WOA algorithm,
which was compared with the Partical swarm optimization algo-
rithm in determining the robot model parameter, provided an
improvement in parameter determination [35]. Similarly, for the
Leader-Follower Robot (LFR), which is a different robot, the average
was calculated while obtaining the model obtained through the
gray wolf algorithm It was determined that the squared error value
improved from 73.6% to 78% with the hybrid gray wolf whale algo-
rithm [36].

A holistic multi-objective optimization framework(MO-HPM) is
proposed for the participation of charged electric vehicles in clear-
ing the harmonic power market in a microgrid properly, and the
study is presented in the field of electric machines. The proposed
study focuses on the ability of harmonic balancers to simultane-
ously optimize conflicting targets, including the total distortion
pay function and the average of the total harmonic distortion,
while meeting the constraints associated with the grid, instru-
ments, and market price. In the study, a new hybrid algorithm con-
sisting of whale optimization, gray wolf optimization, and
differential evolution is proposed to create the new market frame-
work, and it is examined whether using the algorithm for various
defined situations may be the best option for solving mathematical
and technical problems, especially MO-HPM [37].

Hybrid gray wolf-whale algorithm is used to obtain high param-
eter values in the improvement of performance parameters in the
image encryption model for medical image security in the field of
medicine [38].

In another study conducted in the same field, a hybrid heuristic
swarm-based support vector machine classifier named Gray Wolf-
Whale Optimization Algorithm and Support Vector Machine
(GWWOA-SVM) has been proposed for early detection of breast
cancer disease. The performance of the proposed model is evalu-
ated on various metrics such as accuracy, precision, recall, speci-
ficity, and F1 score. Our model achieves a classification accuracy
of 97.721% for the WDBC dataset. This model outperforms the
92.98% validation rate obtained in the study with PSO, the 96.65
validation rate obtained with WOA, etc., showing that better
results are obtained and the hybrid algorithm has better perfor-
mance [39].
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From these studies, a new approach has been developed, which
allows to increase the performance of the hybrid gray wolf-whale
algorithm by applying the chaos theory. Better results were
obtained from the study compared with other algorithms and gray
wolf-whale hybridization [40].

It is examined from the studies in which hybrid algorithms can
produce better results compared to the performance of the current
heuristic algorithm. According to this evaluation, the studies of
hybrid heuristic algorithms used in the optimization of OTT
weight, which is the main subject of the study, include the objec-
tives of weight reduction-cost minimization of parameters. Of
these, the optimization of the protection dimensions of oil-type
transformers and the optimization of the operating cost by using
firefly and ant colony algorithms are examined [41].

In order to improve the cooling performance of the oil used in
oil-based transformers, the Taguchi method and Gray Wolf Opti-
mization were hybridized and the mixing ratio of various oil types
was optimized [42].

Some studies focus on achieving maximum efficiency on a dry
type 100 kVA transformer by optimizing the current density (s)
and iron cross section conformity (C) factor using the Particle
Swarm Algorithm, Simulating Annealing and Tree Seed algorithms
[43].

In the studies reviewed, it has not been observed that the Gray
Wolf, Whale algorithm or their hybrid algorithms, which have
been developed in recent years, have been applied in design opti-
mization studies to improve the performance of OTTs that are
widely used in the industry.

Unlike other heuristic algorithms (ABC, FA, ACO, etc.) examined
above, Gray Wolf Optimization Algorithm can reach the result it
shows quickly with the ability to reach optimum parameters in a
limited number of iterations. The Whale Algorithm, on the other
hand, works slower than the gray wolf algorithm, but it reaches
the optimum value with maximum accuracy and gives better
results in verification. It has the ability to converge. It shows that
when these algorithms are hybridized with each other, they have
a complementary structure.

The OTT weight optimization results of the Gray wolf-whale
algorithm to be applied as a hybrid and the advantages such as
cost, size and footprint of these values will benefit the OTT design
optimization. In conclusion:

� The industrial operating cost will be reduced in production of
the transformer with optimum weight value,

� The performance of the hybrid made with heuristic Whale and
Grey Wolf algorithms will be assessed,

� The acquirability of classical method weight values, weight val-
ues obtained through other heuristic algorithms and the values
obtained in this study will be tested against other application
values and interpreted,

The compatibility of statistical data and the values obtained in
this study will be determined.
2. Materials and methods

2.1. Mathematical model of oil type transformers

While obtaining weights for both power transformer and distri-
bution transformer types in OTT, a calculation methodology that
makes use of the used materials and assumptions expressed as
empirical approaches based on experience during the design is
used.

The industrial design parameters of the transformers in this
study and the parameters and hypothetical values given in the cal-
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culations in [44,45] are used. The weight values determined for
powers at both the transmission and distribution levels are deter-
mined using the following parameters.

It is stated that iron core and copper windings are the two most
important parts that make up the weight in OTT. Accordingly, the
total weight of OTT (GT) is expressed as follows.

GT ¼ Gcu þ Gfe ð1Þ

where; Gfe indicates iron weight and Gcu indicates copper weight.
The weight of the iron core, which is the first part of the OTT’s

weight, is the sum of the weights of the legs and yokes that make
up the core.

Gfe ¼ Gfeb þ Gfej ð2Þ
It can be expressed as the sum of the yoke weight (Gfej) and leg

weights (Gfeb) in the equation. The equations of the yoke and leg
weights here are obtained using the following expressions.

qfe ¼ C

ffiffiffiffiffiffiffiffiffiffiffi
102S
3f

s
ð3Þ
qfej ¼ 1:1qfe ð4Þ
Gfeb ¼ 3:10�3cfeqfeLs ð5Þ
Gfej ¼ 3:10�3cfeqfej2ð2M þ 0:8DÞ ð6Þ
In these equations; qfe (cm2) and qfej (cm2), indicate the iron

cross section parameters between the transformer legs and the
lower–upper part of the core, cfe indicates the specific gravity of
iron, M indicates the width of the transformer window, D indicates
the diameter of the circle surrounding the core, f indicates fre-
quency, S indicates the apparent power value, and Ls indicates
the yoke length.

As can be seen in these equations, C iron cross-section suitabil-
ity factor is determined as an important and variable parameter for
the calculation of iron weight.

The total copper weight which is the other OTT weight factor is
indicated with equation (7).

Gcu ¼ Gcu1 þ Gcu2 ð7Þ
In the equation, Gcu1 is the primary winding weight and Gcu2 is

the secondary winding weight. The weight in the windings can
be obtained using the equations given below.

q1 ¼ I1
s

ð8Þ
q2 ¼ I2
s

ð9Þ
Gcu1 ¼ 3:10�5ccuw1q1Lm1 ð10Þ
Gcu2 ¼ 3:10�5ccuw2q2Lm2 ð11Þ
In these equations, w1 and w2 indicate the coiling numbers of

the first and second windings, q1 and q2 indicate the first and sec-
ond winding cross sections, s indicates the current density, I1 and I2
indicate the first and second winding currents, ccu indicates the
specific gravity of copper, Lm1and Lm2 indicate the average lengths
of the windings.

It can be seen here that s current density value is an important
variable affecting the copper winding value and thus the copper
weight.
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In this case, as shown in (1), the total weight of the transformer
will be obtained as follows if the total weights of the primary and
secondary windings, the yoke and the legs are indicated separately.

GT ¼ Gcu1 þ Gcu2þGfebþGfej ð12Þ
The label weight values of the OTT for both distribution trans-

formers (50kVA-100kVA) and power transformers (1000KVA) will
be determined and compared with the previous weight optimiza-
tion value obtained through heuristic algorithms and optimum val-
ues obtained through the Whale-Grey Wolf hybrid algorithm, and
their accuracy will be statistically determined.

Table 1 shows the label parameters of the 50 kVA, 100 kVA and
1000 kVA OTTs used in this study. The weights of the OTTs are
332.28 kg, 757.81 kg and 1664 kg respectively.
Fig. 2. Algorithm of Grey wolves’ leadership hierarchy.
3. Methods

3.1. Grey wolf optimization (GWO) algorithm

The Grey Wolf Algorithm developed by Mirjalili et al.[16] in
2014 is one of the other common population-based intuitive algo-
rithms such as the Genetic Algorithm, Particle Swarm Optimiza-
tion, Firefly algorithm etc. However, this innovative algorithm
has better convergence capability and can reach the optimum
point in a shorter time as well as having simple and easily applica-
ble features.

The leadership hierarchy used for the implementation of the
Grey Wolf Algorithm includes four different dominant grey wolf
groups. In the leadership hierarchy seen in Fig. 2, the first layer is
alpha (a) and it represents the leading wolf which is the strongest
and most talented. Beta (b) wolves in the second layer command
the other inferior wolves and communicate with alpha wolves.
Beta wolves fortify the commands of the alpha, convey them to
the inferior wolves, and give feedback to the alpha wolf. Wolves
in the third layer are classified as delta wolves (d) which are not
included in the other three layers and have to succumb to alpha
and beta class wolves but dominate omega wolves. Here
a > b > d, and the lowest layer includes omega wolves (x) that
are directed by these grey wolves and will perform the optimiza-
tion. x grey wolves make up a large part of the population and
are mainly responsible for stabilizing the internal affairs of the
population and protecting and monitoring the young wolf popula-
tion. This class of wolves is the most dominant group.

The hunting process used for the implementation of the grey
wolf algorithm consists of searching for prey, tracking and moni-
toring, surrounding, and attacking.

In the Grey Wolf Algorithm, the search for prey is carried out
mainly by a, b, d. In optimization, the first optimal solution is con-
sidered to be alpha (a), while beta (b) and delta (d) are considered
the second and third best solutions, respectively. Omega wolves
Table 1
Parameter values of transformers with different power levels.

Parameters Unit

Iron cross- section convenience value (C) cm2joule-1/2

Current density value (s) A/cm2

Primary winding turn turn
Secondary winding turn turn
Primary winding weight kg
Secondary winding weight kg
Three-legged weight of the Transformer kg

Yoke weight of the Transformer kg
Total Weight of the Transformer kg
Efficiency %
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(x) follow these three wolves. For the optimal implementation of
the algorithm, all grey wolves follow the prey, determine its loca-
tion and begin to surround it. (13) and (14) are used for mathemat-
ical modelling of this behavior.

Dp ¼ CXp tð Þ � XðtÞ�� �� ð13Þ

X t þ 1ð Þ ¼ Xp tð Þ � ADp ð14Þ
where Dp indicates the wolf’s distance to wolf x, which is the

dominant character, or its diameter in a circle, t indicates the num-
ber of iterations, X(t) indicate a member of the grey wolf popula-
tion, and Xp indicates the current position of the prey. A and C
are called coefficient vectors in (13) and (14) and calculated as
shown in (15) and (16).

A ¼ 2ar1 � a ð15Þ

C ¼ 2r2 ð16Þ
where a denotes a coefficient that decreases from 2 to 0 as the

iteration progresses while r1 and r2 are numbers that are randomly
selected between 0 and 1. Grey wolves (a, b and d) hunt their prey
after surrounding it. In other words, they focus on the optimum
point. Fig. 2 shows the hunting strategy of grey wolves.

The |A| dimension determines the optimization mode of the
population while the grey wolves are surrounding the prey. When
|A|>1, the wolves will hunt globally; when |A|<1, the wolves will
gather for local hunt. Meanwhile, C in the GWOwill affect the posi-
tion of the prey and therefore the wolves will perform random
searching behavior while looking for prey to achieve global
optimization.

The positions of grey wolves are determined by (17) and (18) in
the hunting mechanism given in Fig. 3.
50 kVA 100 kVA 1000 kVA

4–6
5.6

4–8

2.2 2.2 6
5798 3287 420
70 44 16
68.2 79.57 198
45.6 45.01 126
105.8

391.03
652

112.8 242.2 688
332.28 757.81 1664
95 92 98.04



Fig. 3. Hunting strategy of Grey wolves [16].
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Da ¼ C1Xa � XðtÞj j
Db ¼ C2Xb � XðtÞ�� �� ð17Þ
Dd ¼ C3Xd � XðtÞj j
X1 ¼ Xa tð Þ � A1Da
X2 ¼ Xb tð Þ � A2Db ð18Þ
Fig. 4. Grey Wolf Optimization Pseudo Code Scheme.
X3 ¼ Xd tð Þ � A3Dd

In these equations, Xa, Xb and Xd indicate the position of the
grey wolves. (19) shows the new location of the prey after hunting.

X t þ 1ð Þ ¼ X1 þ X2 þ X3

3
ð19Þ

The basic pseudo-code describing the operation of the grey wolf
algorithm is as follows (see Fig. 4).

3.2. Whale optimization algorithm (WOA)

WOA was developed by Mirjalili and Lewis in 2016 in order to
achieve good results in solving problems that could not be solved
by deterministic methods [19]. WOA is an optimization approach
that simulates the hunting strategies of humpback whales. The
bubble hunting strategy inspires what humpback whales use when
hunting. Humpback whales generally feed on small shoals of fish.
They have a unique hunting strategy. They form bubble clouds
by exhaling underwater. Thus, thanks to these bubbles, they gather
their prey together. In these bubbles they create, they move
towards the surface of the water and continue to form bubbles
as they rise to the surface. This way, they ensure that preys stays
inside the bubbles and hide themselves. Fig. 5(a) represents hump-
back whales’ bubble strategy hunting methods. Fig. 5(b) accurately
depicts humpback whales hunting with the bubble strategy. Hunt-
ing technique in Humpback Whale optimization method is mod-
eled in 3 parts, surrounding the target, advancing towards the
target, and seeking the target.

In the whale optimization algorithm, surrounding the target is
considered the optimum solution to be reached. In cases where
the optimum solution is not known in optimization problems, it
is accepted as the best solution reached or a point around it. In
the next step, the positions of the other solutions are updated
using the best solution after finding the best solution. The mathe-
5

matical model of the target surrounding behavior is shown in (20) -
(23).

D
!¼ C

!
X��!

tð Þ � X
!ðtÞ

��� ��� ð20Þ
X
!ðt þ 1Þ ¼ X��!

tð Þ � A
!

:D
!��� ��� ð21Þ
A
!¼ 2 � a!� r!� a! ð22Þ
C
!¼ 2 � r! ð23Þ

t represents the current iteration, X
!� tð Þ represents the best

solution vector, A
!

and C
!

are the coefficient vectors, and r! is a ran-
dom variable and its value is between 0 and 1.

In move towards the target of WOA, narrowing the circle

around the prey is possible by decreasing the value of an A
!

in
(22). Fig. 6 shows the spiral motion and the location of the best



Fig. 5. (a) A picture representing humpback whales’ bubble strategy fishing methods,

Fig. 6. Spiral movement.
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solution. (24) and (25) were created by calculating the distance
between the target location and the solution candidate for this
motion (see Fig. 7).

X
!

t þ 1ð Þ ¼ D0:
�!

ebl: cos 2plð Þ þ X��!
tð Þ ð24Þ

D0! ¼ X��!
tð Þ � X

!ðtÞ ð25Þ
b is the logarithmic spiral constant, and l is a random number in

the range [-1,1].
The algorithm determines which X(t) value will make spiral or

linear motion with ½ probability, as shown in the figure below(26).

X
!

t þ 1ð Þ ¼ X
!� tð Þ � A

!� D
!
;p < 0:5

D0�!� ebl � cos 2plð Þ þ X
!� tð Þ;p > 0:5

( )
ð26Þ

p is a random number in the range [0,1].
At the end of the WOA search for the target, the new positions

of the solution candidates are determined around a randomly cho-
sen solution candidate instead of the best-known point for the glo-
bal solution. Its mathematical model is shown in (27) and (28).

D
!¼ C

!
Xrand
��!� X

! ð27Þ

X
!

t þ 1ð Þ ¼ Xrand
��!� A

!
:D
! ð28Þ
6

Xrand represents a random solution vector selected. Whether
global or local searches are to be made is decided according to

the value of vector A
!
. For vector A

!
, when A > 1 or A < 1, a point

further away from the best moment can be selected. These cases
are considered a global search, and (27) and (28) are applied.
3.3. Hybrid Grey Wolf-Whale optimization algorithm (HGWOA)

A hybrid algorithm using the Grey Wolf Algorithm’s prey search
method is created in this study to optimize the prey equation of
WOA.

It is aimed to calculate the optimum values obtained in the
hybrid algorithm equations (19) and the optimum transformer

weight seen in (29) as X
!

t þ 1ð Þ value, which gives the best result.

X
!

t þ 1ð Þ ¼ X1 þ X2 þ X3

3
ð29Þ

In this way, the fast and in-population approach of the Grey
Wolf Algorithm to find a prey is combined with WOA’s approach
that yields the result closest to the optimum value in finding a
prey. It will be possible to reduce the operating cost affected by
weight through this optimum weight obtained using this hybrid
algorithm. Fig. 8. shows the flowchart applied for this study.
4. Performance of HGWOA in OTT weight optimization

4.1. Benchmark test of HGWOA

The HGWOA algorithm created in the paper was tested for effi-
ciency by solving 10 functions that are commonly used for opti-
mization test problems [16,19]. The average cost function and
standard deviation measurements are used to compare HGWOA
performance to that of GWO and WOA. The average cost function
is used to demonstrate the algorithm’s capacity to discover a global
minimum, whereas the standard deviation test is used to deter-
mine how dependable the algorithm is in finding the global mini-
mum. Fig. 9 depicts typical 2D cost function graphs for some of the
test scenarios covered in this study.

Table 2. shows benchmark functions for evaluating an algo-
rithm’s exploration and exploitation capabilities, which include
unimodal, multimodal, and fixed-dimension multimodal functions.

Unimodal functions assess an algorithm’s exploitation capabili-
ties, whereas multimodal functions assess an algorithm’s explo-
ration capabilities.

The variables ’Dim’, ‘Range’, and fmin represent the dimension,
range, and ideal value f min mentioned in the literature, respec-
tively. The number of searches and the maximum number of iter-



Fig. 7. Whale Optimization Algorithm Pseudo Code Scheme.

Start

OTT Data 
Preprocessing

Determining qfe and 
qfej based on C 

values

Determining q1 and 
q2 based on s values

Determining Gfe 
and Gcu values

Best 
Weight of 

OTT

Initialize WOA parameters
Assign a and coefficients A and C

Population Initialization and Fitness 
Values calculation

According to the best selection obtained
form WOA , This time the HGWOA 

parameters are updated and the populatio
is maintained

Individual initialization select the first 
three fitness ( , and ) 

When A <1, The population is obtained up
to the determined C and s values. Weight 

values are updated accordingly.

Uptade the GreyWolf population and 
Position according to the |A| 

Fig. 8. Flowchart of HGWOA.
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ations used to execute these algorithms in this study are 30 and
1000, respectively.

Tables 3. shows the mean and standard deviation values
derived from ten independent runs. The bolded values represent
the best performance (smallest cost function or standard deviation
value). Tables III shows that the HGWOA algorithm produces very
competitive outcomes. For example, in unimodal functions F2-F6,
and multimodal functions F7, F9, HGWOA beats GWO and WOA
algorithms.

In the benchmark test of the analysis made at different
strengths of OTT, cost function data obtained from the average val-
ues of the proposed HGWOA optimization algorithm are included.
The convergence curves created according to these values were
obtained according to the data of the F1 function and F9 functions
used in the test. In Fig. 10 curve, it can be determined that the best
values are in HGWOA.Fig. 11.
4.2. OTT analysis and Comparison of results

The OTTs whose weights were optimized using HGWOA are 50
kVA and 100 kVA distribution and 1000 kVA power transformers.



(a)F1 (b)F9

Fig. 9. Examples of how math functions are usually shown in two dimensions:(a)Unimodal (b) Multimodal.

Table 2
Benchmark Functions.

Function Group Dim Range fmin

F1=
Pn

i¼1x
2
i

Unimodal 30 [-100,100] 0

F2=
Pn

i¼1 xij j þQn
i¼1 xij j Unimodal 30 [-10,10] 0

F3=
Pn

i¼1ð
Pi

j�1xjÞ
2 Unimodal 30 [-100,100] 0

F4=max i xij j;1 � i � nf g Unimodal 30 [-100,100] 0

F5=
Pn�1

i¼1 100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2

h i
Unimodal 30 [-30,30] 0

F6=
Pn

i¼1ix
4
i þ random½0;1Þ Unimodal 30 [-1.28,1.28] 0

F7=
Pn

i¼1�xi sin
ffiffiffiffiffiffiffi
xij jp� �

Multimodal 30 [-500,500] �418.9829x5

F8=
Pn

i¼1 x2i � 10 cos 2pxið Þ þ 10
� �

Multimodal 30 [-5.12,5.12] 0

F9=�20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1x

2
i

q	 

� exp 1

n

Pn
i¼1 cos 2pxið Þ� �þ 20þ e Multimodal 30 [–32,32] 0

F10= 1
400

Pn
i¼1x

2
i �

Qn
i¼1 cos

xiffiffi
i

p
	 


þ 1 Multimodal 30 [-600,600] 0

Table 3
Benchmark numerical comparison of HGWOA, GWO and WOA algorithms.

Function GWO WOA HGWOA

F(x) Average Std Average Std Average Std

F1 5.05x10-41 1.38x10-40 5.14x10-89 3.24x10-88 1.34861 � 10-56 6.8784 � 10-56

F2 4.99x10-6 6.73x10-5 4.30x10-23 5.95x10-22 1.6308 x10-27 8.9323 � 10-27

F3 1.23x10-2 4.63x10-2 4.55x1025 9.36x1025 1.8513 x10-10 9.9615 � 10-10

F4 8.76x10-6 3.48x10-5 2.15x1013 1.38x1014 7.7533 x10-17 3.1568 � 10-16

F5 4.92 9.17 5.08 20.5 4.8596 10.8535
F6 3.10x10-4 3.22x10-4 1.19x10-3 1.64x10-3 1.5093 x10-4 1.2007 � 10-4

F7 �1.41x104 9.61x10-2 �1.89x104 0.180 �1.2569 x104 0.0396
F8 0 0 0 0 0 0
F9 5.28x10-15 2.6x10-15 2.70x10-15 1.81x10-15 3.4047 � 10-15 1.3467 � 10-15

F10 0 0 0 0 0 0
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Objective function in these transformers’ weights optimization
is shown in (30):

GT C; sð Þ ¼ minð
X100
i;j

½GfeijðCij; sijÞ þ GcuijðCij; sijÞ�Þ ð30Þ

Here, the objective function can be calculated with different
restrictions according to the usage area and power value of the
transformers. Conventionally used constraints of transformer stan-
dard design parameters are as given in [18], as well as special con-
straints in this specific work is:

Constraints for 50kVA and 100kVA OTTs;

2:2A=mm2 < s < 3:5A=mm2 ð31Þ

4cm2joules�1=2 < C < 6cm2joules�1=2 ð32Þ
Constraints for 1000kVA and 100kVA OTTs;

3:5 A=mm2 < s < 5 A=mm2 ð33Þ
8

4 cm2joules�1=2 < C < 8 cm2joules�1=2 ð34Þ
100 random values are assigned to each variable (s, C) within

the specified range. The analyses include 100 iterations for
HGWOA optimization. Accordingly, weight calculations are per-
formed with different s and C values with 100 � 100 size for each
OTT. In the HGWOA algorithm, the hunting population optimized
through the Grey Wolf algorithm reaches the best value with
10,000 whales. In this way, the optimum transformer weight value
will be obtained as a result of optimization. All parameters of OTT
(magnetic current density, specific ampere turn value etc.) used in
weight calculation are updated in compliance with the design.
These values have been added to calculations in accordance with
the OTT types as shows in Table 4.

Furthermore, the weight values obtained with HGWOA are
compared with values obtained with classical methods and those
obtained with methods used in other studies.

In these comparisons, the algorithms used in the studies in [42]
and [43] in 50 kVA OTT weight optimization were compared. BA,
FA, and ACO algorithm optimization values were compared with



Fig. 10. Convergence Curve of Unimodal Benchmark Function F1.

Fig. 11. Convergence Curve of Multimodal Benchmark Function F9.

Table 4
Values Of Some Of The Other Parameters Used In OTT Weight Calculation.

Parameters Unit 50 kVA 100 kVA 1000 kVA

Magnetic Flux Density (B) Gauss 1.28*104 1.38*104 1.43*104

Specific Ampere turn (As) A*turn 330 370 800
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HGWOA values, together with the optimization values of the orig-
inal GWO and WOA algorithms that formed the hybrid algorithm
with 50kVA OTT label parameters. it can be seen that the closest
values to HGWOA are the original GWO and WOA that make up
the algorithm.

For 100kVA OTT, the PSO, SA, GSA results used in [46,47] and
the optimization values of the GWO andWOA algorithms are given
together with the suggested HGWOA results and compared.

In the optimization of 1000kVA OTT weight parameters in the
power transformer class, the optimization values of the BA, ACA,
FA and original GWO and WOA algorithms used in the [48,49]
studies were compared with the proposed HGWOA optimization
values.

Table 5 shows that in the weight optimizations obtained with
heuristic algorithms applied according to the power of the trans-
formers in the analysis, the values of the HGWOA algorithm further
improve the results compared to the values obtained with other
algorithms.

Moreover, the compatibility of the values obtained from the
study is also verified using the regression method and the least
squares method, which are statistical quantitative methods.

Accordingly, Fig. 12. shows the graph of the values obtained by
C and s variables in the population in the calculation of the
HGWOA weight for 50kVA and 100 kVA distribution OTTs and
1000 kVA power OTT.

It was determined that the values obtained through the
HGWOA algorithm which was developed as an innovative algo-
rithmwith the values given in Table V and which has not been seen
in any hybrid studies on transformer optimization before create
more optimum values than weight values calculated with the
Table 5
HGWOA and Other Algorithms’ Optimization Results for Different Power Type OTT.

Parameters Classical Method BA

Iron cross- section convenience value (C) 4–6 4.4
Current density value(s) 2.2 2.8
Primary winding turn 5798 6610
Secondary winding turn 70 80
Primary winding weight 68.2 60.42
Secondary winding weight 45.6 48.92
Three-legged weight of the Transformer 105.8 106,8
Yoke weight of the Transformer 112.8 83,93
Total Weight of the Transformer 332.28 300.07
Efficiency 95 95.1

Parameters Classical Method PSO
Iron cross- section convenience value (C)

5.6
4.12

Current density value(s) 2.2 3.09
Primary winding turn 3287 8621
Secondary winding turn 44 92
Primary winding weight 79.57 97.79
Secondary winding weight 45.01 45.65
Three-legged weight of the Transformer 391.03 134
Yoke weight of the Transformer 242.2 146.63
Total Weight of the Transformer 757.81 425,07
Efficiency 92 97

1000kVA OTT
Parameters Classical Method BA
Iron cross- section convenience value (C) 4–8 7
Current density value(s) 6 4.9
Primary winding turn 420 420
Secondary winding turn 16 16
Primary winding weight 198 198
Secondary winding weight 126 114.5
Three-legged weight of the Transformer 652 644
Yoke weight of the Transformer 688 636
Total Weight of the Transformer 1664 1592.50
Efficiency 98.04 96
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known classical design methods. While the weight of 50 kVA
OTT is 332.28 kg in distribution transformers, whose quantity is
quite high among the total number of transformers in the distribu-
tion type of electrical energy, this value becomes 264.454 kg after
optimization. This value provides 20.4% weight gain. At 100 kVA,
the weight decreases from 757.81 kg to 419.83 kg and provides a
weight reduction of approximately 44%. In 1000kVA, which is a
power transformer, this value decreases from 1664 kg to
1420.33 kg, providing a weight reduction of approximately 14%.
Table 6 shows the gains of these weight reductions in relation to
the cost values obtained from previous studies. It was determined
in the comparisons made in Table 6, which includes the evalua-
tions made according to the data in the economic estimation study
made in [50], that there will be a cost decrease in approximately
the same direction according to the weight values.

When the weight values obtained in the study were compared
with the weight values calculated according to the OTT power val-
ues in other studies, it was determined that the values obtained
through the HGWOA algorithm used in our study are more optimal
than the other values. Fig. 13. (a) shows that although the values
obtained in previous studies for 50 kVA OTT are better than the
values obtained through the classical method, the HGWOA values
include more optimal values. As can be seen in Fig. 13(b), it was
observed in a comparison performed to a limited extent due to
the shortage of studies conducted on 100 kVA OTT that the value
obtained by applying the HGWOA algorithm calculates a more
optimal weight value.

Fig. 14 shows that, in other studies on 1000 kVA OTT power
transformer, the values are compared with the values obtained
50kVA OTT

ACA FA GWO WOA HGWOA

4.5 4.1 3.02 3 3.02
2.6 3.5 2.4 2.4 2.4
9756 6610 3287 3287 5662
118 80 44 44 42
91.86 60.42 67 68 66,6
71.02 48.92 31.4 29.3 26,94
106.79 74.6 86.86 79.6 81,36
83.90 59.8 88.82 89 89,50
307.51 47.4 269.47 265.9 264.454
94.8 95 95 95 95.1
100kVA OTT
SA GSA GWO WOA HGWOA

4.09 4.16
4.7 4–6 4–6

3.0868 3.1158 2.7 2.7 4
8622 8624 2060 2060 8394
92 92 24 24 98
98.35 96.76 98,8 88 98.15
46.04 44.99 36.1 45 40.08
134 134 141.8 138.6 134.09
145.68 148.34 151.6 150 147,5
424.07 424.09 428.3 421.6 419,83
97 97 95 95 92.1

ACA FA GWO WOA HGWOA
7.2 7.1 4.2 77.2 7.19
4.9 4.89 4.7 4.9 4.98
420 420 380 380 1990
16 16 15 15 23
191 190 181 181.7 151.89
114.82 102.75 115 105 62.56
660 606 594 584.5 574.23
635 626 626 632.75 631.65
1597.82 1524.75 1515 1503.95 1420.33
96 96 96.8 96.8 98
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by implementing the HGWOA algorithm and a significant optimum
value is calculated.

The values constituting the transformer weight could be
reduced by performing optimum weight calculation through
HGWOA algorithm in both power and distribution OTT transform-
Table 6
50kVA-100kVA Distribution OTT and 1000 kVA Power OTT Parameters Of HGWOA Cost C

Optimization
Method

50kVA Distribution OTT 100kVA Distribu

Calculeted
Weight

Per weight
cost

Total Cost
(€)

Calculeted
Weight

Classical Method 332,28 14,37 4776,00 757,81
GWO 269.47 14.37 3872.28 428.3
WOA 265.90 14.37 3820.98 421.60
HGWOA 264,454 14,37 3801,34 419,83
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ers, thus decreasing the impact of this weight on the operating
costs. This assessment was statistically verified with a test per-
formed through the Least Squares method and Regression Analysis
using the values obtained in this study and those obtained in other
studies. The equations and the R2 value providing information
about the graph accuracy are specified on the graphs in the statis-
tical evaluation. It is known that the closer the R2 value to 1, the
more accurate results the equation yields. Accordingly, the graphs
where the R2 value is closest to 1 were verified with the weight
values calculated in this study.

In Fig. 15 (a), the equation accuracy in the graph created using
the values obtained in studies where 50-kVA weight optimization
was performed and the values obtained through HGWOA was
determined based on the convergence of R2 value to 1 and the
value was found compatible. Likewise, in Fig. 15 (b), although there
are not many studies on 100 kVA, the HGWOA value was found to
be accurate considering that the values were low. Fig. 16 shows the
statistical verification of the values obtained as a result of studies
conducted for 1000 kVA power OTT and HGWOA.

5. Conclusion

OTTs are electric machines that are widely used for conveying
and distributing electric power. The place held by these machines
in operating costs becomes permanent accordingly. These trans-
former costs can be reduced by optimizing weight in an industrial
manner. As a result, while operating profitability can be increased,
the service life of transformers can be positively affected.

Therefore, this study attempts to optimize weights of OTTs with
different power levels by adding the ability of the Grey Wolf Opti-
mization to reach the optimal point in the fastest way possible to
the ability of theWhale Algorithm, which is an innovative heuristic
algorithm, to achieve the value closest to the optimum result. The
values to be reduced were calculated as approximately 20.4% to
omparison.

tion OTT 1000kVA Power OTT

Per weight
cost

Total Cost
(€)

Calculeted
Weight

Per weight
cost

Total Cost
(€)

14,37 10892,32142 1664 14,37 23911,68
14.37 6154.67 1515 14.37 21770.55
14.37 6058.39 1503.95 14.37 21611.76
14,37 6034,39292 1420,33 14,37 20410,14



(a)

(b)

50kVA

Optimization Methods

BA ACA FA GWO WOA HGWOA

)gk(
T

T
O

fothgie
W

0

50

100

150

200

250

300

350

300.07 307.51
295.13

269.47 265.90 264.45

100kVA

Optimization Methods

PSO SA GSA GWO WOA HGWOA

)gk(
T

T
O

fothgi e
W

0

100

200

300

400

500

425.07 424.07 424.09 428.30 421.60 419.83

Fig. 13. (a) 50kVA (b) 100kVA OTT Weights Comparison Scheme.

1000kVA

Optimization Methods

BA ACA FA GWO WOA HGWOA

)gk(
T

T
O

foth gi e
W

0

200

400

600

800

1000

1200

1400

1600

1800
1592.50 1597.82

1524.75 1515 1503.95
1420.33

Fig. 14. 1000kVA OTT Weights Comparison Scheme.

Fig. 15. (a)50kVA (b)100kVA OTT Cost Comparison Statistical Scheme.

y = 234.88x2 - 2240.7x + 25766
R² = 0.9281

18000
19000
20000
21000
22000
23000
24000
25000

Classical
Method

GWO WOA HGWOA

)$(
T

T
O

fo
TS

O
C

Optimization Method

Cost of 1000kVA OTT

Fig. 16. 1000kVA Power OTT Cost Comparison Statistical Scheme.

M. Toren Engineering Science and Technology, an International Journal 43 (2023) 101439

12
44% for 50 kVA and 100 kVA distribution OTTs and approximately
14% for 1000 kVA power OTT. It was determined that optimization
methods where different prominent features were used yielded
better results and the results produced more optimal values than
the results obtained in other studies. These values were verified
by testing through statistical analyses.

In future research, the hybridized GWO and WHO algorithms
will be able to leverage their performance to deliver optimal solu-
tions for a variety of industrial and experimental situations. Fur-
thermore, they will make original contributions to issue solving
through the new hybridizations they will create using the newly
discovered algorithms.
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