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Abstract
The limit q-Durrmeyer operator, D∞,q , was introduced and its approximation proper-
ties were investigated by Gupta (Appl. Math. Comput. 197(1):172–178, 2008) during
a study of q-analogues for the Bernstein–Durrmeyer operator. In the present work,
this operator is investigated from a different perspective. More precisely, the growth
estimates are derived for the entire functions comprising the range of D∞,q . The
interrelation between the analytic properties of a function f and the rate of growth for
D∞,q f are established, and the sharpness of the obtained results are demonstrated.

Keywords q-Durrmeyer operator · Analytic function · Entire function · Growth
estimates

Mathematics Subject Classification 30D15 · 30B40 · 47B38

1 Introduction

The significant influence of the Bernstein polynomials on modern mathematics—not
only theoretical, but also applied and computational—brought about the emergence
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of its numerous versions and modifications. See, for example, [2, 3, 12]. While the
Bernstein polynomials serve to approximate the continuous functions on [0, 1], the
Kantorovich polynomials constructed with respect to the Bernstein basis are appli-
cable for the approximation of integrable functions. Kantorovich’s breakthrough idea
was further developed by Durrmeyer [7] and Derriennic [6]. The latter proved that
the Bernstein–Durrmeyer polynomials approximate functions in L1[0, 1], and also
generate self-adjoint operators in L2[0, 1].

With the increasing role of the q-Calculus (see, e.g. [1, 4, 5, 14]), the q-analogues of
various Bernstein-type operators have come to the fore. The reader is referred to [3, 8,
15]. New versions of these operators, targeting a wide spectrum of various problems,
are continuously coming out.

In 2008, Gupta [9] introduced a simple q-analogue of the Bernstein–Durrmeyer
operators, denoted by Dn,q , and studied its approximation properties. One of the
properties that he proved was that {Dn,q} converges to the limit operator D∞,q in the
strong operator topology on C[0, 1]. More results on the q-Durrmeyer operator have
been obtained in [10, 13].

In the present work, further investigation is carried out concerning the limit q-
Bernstein–Durrmeyer operator. Distinct from the preceding studies on the subject, this
paper is focused on the analytic properties that the image of f ∈ C[0, 1] possesses
under the operator D∞,q . Here, it is proved that, for each f ∈ C[0, 1], the function
D∞,q f admits an analytic continuation from [0, 1] to the whole complex plane C.
The growth estimates of the entire function D∞,q f are provided, along with the
interconnection between the growth of D∞,q f and the behaviour of f . The sharpness
of the obtained results is demonstrated.

To present the results, let us recall the necessary notation and definitions. The
q-Pochhammer symbol denotes, for each a ∈ C,

(a; q)0 := 1, (a; q)n =
n−1∏

j=0

(1 − aq j ), (a; q)∞ =
∞∏

j=0

(1 − aq j ).

The Euler Identities

(z; q)∞ =
∞∑

k=0

(−1)kqk(k−1)/2

(q; q)k
zk, |q| < 1, (1.1)

and

1

(z; q)∞
=

∞∑

k=0

zk

(q; q)k
, |q| < 1, |z| < 1, (1.2)

will be used throughout. See [1, Ch. 10, Cor. 10.2.2].
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The q-integral over an interval [0, a], first introduced by Thomae [16] and later by
Jackson [11], is defined as

∫ a

0
f (t) dqt := (1 − q)a

∞∑

j=0

q j f (aq j ). (1.3)

Definition 1.1 [9] Let q ∈ (0, 1), f ∈ C[0, 1]. The limit q-Durrmeyer operator is
defined by

(D∞,q f )(x) := D∞,q( f ; x) =
{∑∞

k=0 A∞k( f )p∞k(q; x), x ∈ [0, 1),
f (1), x = 1.

where

A∞k( f ) := q−k

1 − q

∫ 1

0
f (t)p∞k(q; qt) dq t, k = 0, 1, . . . , (1.4)

and

p∞k(q; x) = (x; q)∞ xk

(q; q)k
, k = 0, . . . . (1.5)

As coefficients (1.4) form a bounded sequence whenever f ∈ C[0, 1], the function
D∞,q f admits an analytic continuation from [0, 1] to the open disc {z : |z| < 1}.
Taking into account (1.3), A∞k( f ) can also be expressed as

A∞k( f ) = (q; q)∞
(q; q)k

∞∑

j=0

f (q j )q(k+1) j

(q; q) j
. (1.6)

Throughout the paper, the letter C—with or without subscripts—denotes a positive
constant whose specific value is of no importance. Subscripts, when used, indicate
the dependence of C on certain parameters. It should be pointed out that the same
letter may stand for different values. Moreover, if f is analytic in the closed disc
�r := {z : |z| ≤ r}, the notation

M(r; f ) := max
z∈�r

| f (z)|

will be employed.
The article is organized as follows: In Sect. 2, the main results are stated, while

Sect. 3 contains the auxiliary technical lemmas. Finally, the proofs of the main results
appear in Sect. 4.
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2 Statement of Results

Theorem 2.1 For each f ∈ C[0, 1], the function (D∞,q f )(x) admits an analytic
continuation from [0, 1] as an entire function given by

(D∞,q f )(z) =
∞∑

j=0

f (q j )q j

(q; q) j

∞∑

n=0

(−1)nqn(n+1)/2

(q; q)n
(z; q)n+ j . (2.1)

The proof of Theorem 2.1 presented in Sect. 4 yields, apart from (2.1), the following
corollary:

Corollary 2.2 The growth of D∞,q f , for each f ∈ C[0, 1], enjoys the following esti-
mate:

M(r; D∞,q f ) = O((−r; q)∞), r → ∞. (2.2)

It is worth pointing out that coefficients (1.6) can be viewed as the values of the
function g(z) := (qz; q)∞ ρ(z) at points z = qk , k = 0, 1, . . ., where

ρ(z) =
∞∑

j=0

f (q j )q j

(q; q) j
z j . (2.3)

Since (qz; q)∞ is entire and the series converges in the disc {z : |z| < 1/q} for any
f ∈ C[0, 1], it follows that g is analytic in that disc. Clearly, the radius of convergence
for ρ can be greater than 1/q. The representation below of D∞,q with the help of
divided differences of g is important.

Theorem 2.3 Given f ∈ C[0, 1], let g(z) = (qz; q)∞ ρ(z), where ρ is defined by
(2.3). Then,

(D∞,q f )(z) =
∞∑

k=0

(−1)kqk(k−1)/2 g[1; q; . . . ; qk]zk, z ∈ C.

Here, g[x0; . . . ; xk] stands for the divided difference of g at the distinct nodes
x0, . . . , xk .

This representation allows us to not only refine the estimate of Corollary 2.2, but
also establish a connection between the behaviour of f and the growth of its image
under D∞,q .

Theorem 2.4 Let R > 1 be such that ρ is analytic in �R. Then,

M(r; D∞,q f ) = o

(
(−r; q)∞

rλ

)
, r → ∞,

for every λ < (ln R)/ ln(1/q).
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As a consequence of Theorem 2.4, the crude estimate (2.2) can be improved. Since
ρ is analytic in {z : |z| < 1/q}, it is possible to assume λ = 0 in Theorem 2.4 and
obtain the following result.

Corollary 2.5 For any f ∈ C[0, 1],

M(r; D∞,q f ) = o((−r; q)∞), r → ∞.

Corollary 2.6 If f (q j ) = O(qα j ), j → ∞, for some α > 0, then

M(r; D∞,q f ) = o(r−λ(−r; q)∞), r → ∞, (2.4)

for all λ < 1 + α.

Indeed, in this case, ρ is analytic in {z : |z| < q−1−α}.

Corollary 2.7 If, for every α > 0, the estimate f (q j ) = o(qα j ), j → ∞ holds, then,
for every λ ≥ 0, (2.4) is true.

The estimate in Theorem 2.4 is sharp as demonstrated by the assertion below.

Theorem 2.8 For every λ > 1, there exists f ∈ C[0, 1] such that

M(r; D∞,q f ) ≥ Cr−λ(−r; q)∞, r → ∞.

Theorem 2.4 and Corollaries 2.5–2.7 establish the connection between the radius of
convergence for the series (2.3) and the rate of growth for D∞,q f . In a general sense,
the greater the radius is, the slower the growth becomes. Approaching the problem
from a different angle, the dependence of the growth on the differentiability of f
at the origin is addressed in the next assertion. The statement makes it possible to
obtain better estimates for M(r; D∞,q f ) than those guaranteed by Theorem 2.4 when
f is differentiable at 0 even though the series (2.3) converges only in the smallest
admissible disc.

Theorem 2.9 Let f be m times differentiable at 0 from the right. Then,

M(r; D∞,q f ) = o(r−λ(−r; q)∞), r → ∞, (2.5)

for all λ < 1 + m.

Corollary 2.10 If f is infinitely differentiable at 0 from the right, then (2.5) holds for
all λ > 0. In particular, (2.5) is valid whenever f is analytic in a neighbourhood of 0.
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3 Auxiliary Results

In what comes next, the function τ given by

τ(z) = (z; q)∞
∞∑

k=0

zk

(q; q)2k
, |z| < 1,

plays a key role.

Lemma 3.1 The function τ admits an analytic continuation from the open unit disc as
an entire function.

Proof Consider

∞∑

k=0

zk

(q; q)2k
=

∞∑

k=0

zk

(q; q)k

(qk+1; q)∞
(q; q)∞

.

By (1.1), with z = qk+1, one has

(qk+1; q)∞ =
∞∑

n=0

(−1)nqn(n−1)/2

(q; q)n
(qk+1)n,

whence

∞∑

k=0

zk

(q; q)2k
= 1

(q; q)∞

∞∑

k=0

zk

(q; q)k

∞∑

n=0

(−1)nqn(n−1)/2q(k+1)n

(q; q)n

= 1

(q; q)∞

∞∑

n=0

(−1)nqn(n+1)/2

(q; q)n

∞∑

k=0

(qnz)k

(q; q)k
.

By virtue of (1.2), it follows that

∞∑

k=0

zk

(q; q)2k
= 1

(q; q)∞

∞∑

n=0

(−1)nqn(n+1)/2

(q; q)n

1

(qnz; q)∞
, |z| < 1.

Consequently, one obtains

τ(z) = 1

(q; q)∞

∞∑

n=0

(−1)nqn(n+1)/2

(q; q)n

(z; q)∞
(qnz; q)∞

= 1

(q; q)∞

∞∑

n=0

(−1)nqn(n+1)/2

(q; q)n
(z; q)n, |z| < 1. (3.1)
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Now, if z ∈ �R , then

∞∑

n=0

∣∣∣∣∣
(−1)nqn(n+1)/2

(q; q)n
(z; q)n

∣∣∣∣∣ ≤
∞∑

n=0

qn(n+1)/2

(q; q)n
(1 + R)n < ∞.

Hence, τ(z) is analytic in�R for each R > 0 and (3.1) is valid for all z ∈ C. Therefore,
τ(z) is an entire function. ��
Lemma 3.2 Let R > 1 be such that ρ given by (2.3) is analytic in {z : |z| ≤ R}. Then,

∣∣∣g[1; q; . . . ; qk]
∣∣∣ ≤ Cqλk

for every λ < (ln R)/ ln(1/q).

Proof It is known that (see for example, [12, Sect. 2.7., p.44, Eq. (4)])

g[a0; . . . ; ak] = 1

2π i

∮

L

g(ζ )dζ

(ζ − a0) . . . (ζ − ak)
,

where L is a positively-oriented, simple and closed curve encircling the distinct points
a0, . . . , ak and g is analytic everywhere on and inside L .

Therefore,

g[1; q; . . . ; qk] = 1

2π i

∮

|ζ |=R

g(ζ )dζ

(ζ − 1)(ζ − q) . . . (ζ − qk)
.

Now, assume that 0 < λ0 < (ln R)/ ln(1/q), that is, 1 < q−λ0 < R. Two cases will
be considered:
Case 1. If q−λ0 ≤ R − 1, then g[1; q; . . . ; qk] can be estimated as

∣∣∣g[1; q; . . . ; qk]
∣∣∣ ≤ 1

2π
· M(R; g)
(R − 1)(R − q) . . . (R − qk)

· 2πR

≤ M(R; g)R
(R − 1)k+1 ≤ 2M(R; g)qλ0k .

Case 2. If R − 1 < q−λ0 ≤ R, then opt for m0 ∈ N0 such that R − qm > q−λ0

whenever m ≥ m0. Then, for k ≥ m0, one has

∣∣∣g[1; q; . . . ; qk]
∣∣∣ ≤ M(R; g)R

(R − 1) · · · (R − qm0−1)(R − qm0) · · · (R − qk)

≤ M(R; g)R
(R − 1) · · · (R − qm0−1)

· 1

(R − qm0)k−m0+1

≤ CR,q,g
1

(R − qm0)k
< Cqλ0k, k ≥ m0.
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As a result,
∣∣g[1; q; . . . ; qk]∣∣ ≤ Cqλ0k for all k, possibly with a different C .

Combining the outcomes of the two cases yields
∣∣g[1; q; . . . ; qk]∣∣ ≤ Cqλ0k , and,

in turn,
∣∣g[1; q; . . . ; qk]∣∣ ≤ Cqλk for all λ ≤ λ0. Since λ0 has been chosen arbitrarily,

it follows that the latter inequality holds for all λ < (ln R)/ ln(1/q) as stated. ��

4 Proofs of Main Results

Proof of Theorem 2.1 Using (1.6), one obtains

(D∞,q f )(z) =
∞∑

k=0

⎛

⎝ (q, q)∞
(q, q)k

∞∑

j=0

f (q j )q(k+1) j

(q, q) j

⎞

⎠ p∞k(q; z), |z| < 1.

Recalling (1.5) leads to

(D∞,q f )(z) =
∞∑

k=0

(q; q)∞
(q; q)k

∞∑

j=0

f (q j )q(k+1) j

(q; q) j

(z; q)∞zk

(q; q)k

= (q; q)∞(z; q)∞
∞∑

j=0

f (q j )q j

(q; q) j

∞∑

k=0

(q j z)k

(q; q)2k

= (q; q)∞(z; q)∞
∞∑

j=0

f (q j )q j

(q; q) j

τ(q j z)

(q j z; q)∞
,

= (q; q)∞
∞∑

j=0

f (q j )q j

(q; q) j
(z; q) jτ(q j z), |z| < 1.

By (3.1),

τ(q j z) = 1

(q; q)∞

∞∑

n=0

(−1)nqn(n+1)/2

(q; q)n
(q j z; q)n,

and, hence,

(D∞,q f )(z) =
∞∑

j=0

f (q j )q j

(q; q) j
(z; q) j

∞∑

n=0

(−1)nqn(n+1)/2

(q; q)n
(q j z; q)n

=
∞∑

j=0

f (q j )q j

(q; q) j

∞∑

n=0

(−1)nqn(n+1)/2

(q; q)n
(z; q) j+n, |z| < 1. (4.1)
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Since, for R > 0 and z ∈ �R , one has |(z; q) j+n| ≤ (−R; q)∞ for all j, n ∈ N0, the
series in (4.1) converges uniformly in any closed disc �R . Therefore,

∣∣∣∣∣

∞∑

n=0

(−1)nqn(n+1)/2

(q; q)n
(z; q) j+n

∣∣∣∣∣ ≤ (−R; q)∞
∞∑

n=0

qn(n+1)/2

(q; q)n
= (−R; q)∞(−q; q)∞

which implies that, when z ∈ �R ,

∣∣(D∞,q f )(z)
∣∣ ≤ (−R; q)∞(−q; q)∞

∞∑

j=0

∣∣ f (q j )
∣∣ q j

(q; q) j

≤ ‖ f ‖C[0,1](−R; q)∞
(−q; q)∞
(q; q)∞

=: C f ,q(−R; q)∞.

Consequently, (D∞,q f )(z) is analytic in any disc of radius R > 0. Thus, (D∞,q f )(z)
is entire. This completes the proof. ��

Proof of Theorem 2.3 Starting from (1.6), one arrives at

A∞k( f ) = (qk+1; q)∞
∞∑

j=0

f (q j )q(k+1) j

(q; q) j
= [(qz; q)∞ ρ(z)]

∣∣∣
z=qk

= g(qk).

Therefore,

(D∞,q f )(z) = (z; q)∞
∞∑

k=0

g(qk)
zk

(q; q)k
, |z| < 1/q.

Application of Euler’s identity (1.1) leads to

(D∞,q f )(z) =
∞∑

k=0

∞∑

j=0

(−1)kqk(k−1)/2g(q j )zk+ j

(q; q)k(q; q) j

=
∞∑

k=0

k∑

j=0

(−1)k− j q(k− j)(k− j−1)/2g(q j )zk

(q; q)k− j (q; q) j

=
∞∑

k=0

(−1)kqk(k−1)/2

⎛

⎝
k∑

j=0

(−1)− j g(q j )

q j( j−1)/2(q; q) j q j(k− j)(q; q)k− j

⎞

⎠ zk,

|z| <
1

q
.
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Employing [12, p. 44, Eq. (3)] with x j = q j , one arrives at

g[1; q; . . . ; qk] =
k∑

j=0

(−1)− j g(q j )

q j( j−1)/2(q; q) j q j(k− j)(q; q)k− j
.

Therefore, formula

(D∞,q f )(z) =
∞∑

k=0

(−1)kqk(k−1)/2 g[1; q; . . . ; qk]zk

holds for |z| < 1/q and also in every disc where D∞,q f possess an analytic continu-
ation. Applying Theorem 2.1, one completes the proof. ��
Proof of Theorem 2.4 By Theorem 2.3,

(D∞,q f )(z) =
∞∑

k=0

(−1)kqk(k−1)/2 g[1; q; . . . ; qk]zk, z ∈ C.

Select λ < (ln R)/ ln(1/q) and take μ such that λ < μ < (ln R)/ ln(1/q). Now,
the growth of D∞,q f may be estimated with the help of Lemma 3.2, which implies
|g[1; q; . . . ; qk]| ≤ Cqμk . Therefore,

∣∣(D∞,q f )(z)
∣∣ ≤ C

∞∑

k=0

qk(k−1)/2 (
qμ|z|)k ≤ C

∞∑

k=0

qk(k−1)/2

(q; q)k

(
qμ|z|)k ,

and, hence,

M(r; D∞,q f ) ≤ C(−qμr; q)∞.

Recall [17, Eq. (2.6)] that, for r large enough,

C1 exp

{
ln2 r

2 ln 1
q

+ ln r

2

}
≤ (−r; q)∞ ≤ C2 exp

{
ln2 r

2 ln 1
q

+ ln r

2

}
.

Consequently,

C1
(−r; q)∞

rμ
≤ (−qμr; q)∞ ≤ C2

(−r; q)∞
rμ

(4.2)

for r large enough.
As a result,

M(r; D∞,q f ) = O

(
(−r; q)∞

rμ

)
, r → ∞,
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= o

(
(−r; q)∞

rλ

)
, r → ∞,

as stated. ��
Proof of Theorem 2.8 For λ > 1, set α = qλ−1 ∈ (0, 1) and

s j =
j∑

k=0

αk

(q; q) j−k
, j ∈ N0.

Obviously, the sequence {s j } is bounded. In addition, it is increasing because, for
j ∈ N0,

s j+1 − s j =
j∑

k=0

αk
(

1

(q; q) j+1−k
− 1

(q; q) j−k

)
+ α j+1 > 0.

Consequently, {s j } converges. Now, let f ∈ C[0, 1] be such that f (q j ) = (q; q) j s j .
This is possible due to the fact that {(q; q) j s j } is convergent as a product of two
convergent sequences. For this f , one has

ρ(z) =
∞∑

j=0

s j (qz)
j .

Evidently, ρ is analytic in {z : |z| < 1/q} and

ρ(z) =
∞∑

j=0

⎛

⎝
j∑

k=0

αk

(q; q) j−k

⎞

⎠ (qz) j

=
∞∑

j=0

(qz) j

(q; q) j

∞∑

k=0

(αqz)k

= 1

(qz; q)∞
· 1

1 − αqz
, |z| <

1

q
.

Hence, g(z) = ρ(z)(qz; q)∞ = 1/(1 − αqz), whence g is analytic in {z : |z| <

1/(αq)}. Simple calculations reveal:

g(k)(z) = (αq)kk!
(1 − αqz)k+1 , k ∈ N0.

By the Intermediate Value Theorem,

g[1; q; . . . ; qk] = g(k)(ξ)

k! , ξ ∈ (qk, 1).
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Since all g(k)(x) are increasing on [0, 1], there holds

g[1; q; . . . ; qk] ≥ g(k)(qk)

k! = (αq)k

(1 − αqk+1)k+1 ≥ (αq)k, k ∈ N0.

As a result,

M(r; D∞,q f ) =
∞∑

k=0

qk(k−1)/2g[1; q; . . . ; qk]rk

≥ (q; q)∞
∞∑

k=0

qk(k−1)/2

(q; q)k
(αqr)k

= (q; q)∞(−αqr; q)∞.

Writing α = qλ−1 and using (4.2), one obtains

M(r; D∞,q f ) ≥ Cr−λ(−r; q)∞, r → ∞,

which completes the proof. ��
Proof of Theorem 2.9 By Taylor’s Theorem, one can write

f (x) = Tm(x) + Sm(x)

where Tm(x) is a polynomial of degree at most m and Sm(x) = o(xm) as x → 0+.
Since D∞,q maps a polynomial to a polynomial of the same degree (see [9, Rem. 3]),
there holds

(D∞,q f )(z) = Pm(z) + (D∞,q Sm)(z),

where Pm(z) is a polynomial of degree at most m and, as such,

M(r; Pm) = o(r−λ(−r; q)∞), r → ∞,

for all λ > 0. As for M(r; D∞,q Sm), it can be estimated by means of Corollary 2.6
with α = m. ��
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