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Abstract
Fuzzy sets (FSs) are a flexible and powerful tool for reasoning about uncertain situations that cannot be adequately expressed
by classical sets. However, these sets fall short in two areas. The first is the reliability of this tool. Z-numbers are an extension
of fuzzy numbers that improve the representation of uncertainty by combining two important components: restriction and
reliability. The second is the problems that need to be solved simultaneously. Complex fuzzy sets (CFSs) overcome this
problem by adding a second dimension to fuzzy numbers and simultaneously adding connected elements to the solution.
However, they are insufficient when it comes to problems involving these two areas. We cannot express real-life problems
that need to be solved at the same time and require the reliability of the information given with any set approach given in the
literature. Therefore, in this study, we propose the complex fuzzy Z-number set (CFZNS), a generalization of Z-numbers and
CFS, which fills this gap. We provide the operational laws of CFZNS along with some properties. Additionally, we define
two essential aggregation operators called complex fuzzy Z-number weighted averaging (CFZNWA) and complex fuzzy Z-
number weighted geometric (CFZNWG) operators. Then, we present an illustrative example to demonstrate the proficiency
and superiority of the proposed approach. Thus, we process multiple fuzzy expressions simultaneously and take into account
the reliability of these fuzzy expressions in applications. Furthermore, we compare the results with the existing set operations
to confirm the advantages and demonstrate the efficiency of the proposed approach. Considering the simultaneous expression
of fuzzy statements, this study can serve as a foundation for new aggregation operators and decision-making problems and
can be extended to many new applications such as pattern recognition and clustering.

Keywords Complex fuzzy Z-numbers (CFZN) · Z-number operations · Complex fuzzy Z-number weighted averaging
(CFZNWA) operator · Complex fuzzy Z-number weighted geometric (CFZNWG) operator
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weighted averaging
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μc Complex membership function
T T-norm
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Zc Complex fuzzy Z-number set
cz Complex valued restriction
ωcz Coefficient of complex angle
rz Complex reliability value
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CV (z) C-accuracy function of complex
fuzzy Z-numbers

RV (z) R-accuracy function of complex
fuzzy Z-numbers

i Set of complex Z-number ele-
ments (i � 1, 2, . . . , n)

k Same indices as i in proofs
zi Collection of CFZNs
αi Weight vector of zi
MCDM Multi-criteria decision-making
A � {A1, A2, . . . , Am} Set of m alternatives
C � {C1, C2, . . . , Cn} Set of n criteria
D Decision matrix
Ni j Normalized decision matrix
Ri Aggregated values of decision

matrix.
UAV Unmanned aerial vehicles
UCAV Unmanned combat aerial vehicles

Introduction

Knowledge is one of the most significant phenomena in the
history of the world. Acquiring and utilizing information
plays a crucial role in technological advancements. While
classical sets were sufficient for these developments until
the 1950s, they proved inadequate in uncertain situations
brought about by new technologies. To address such uncer-
tainties, Zadeh [44] expanded classical sets and introduced
fuzzy sets. This expansion involves allowing for degrees of
membership of elements in sets, unlike classical sets where
an element either belongs or does not belong. This enables
a better representation of real-world problems with uncer-
tainty using fuzzy sets. In other words, by incorporating the
concept of partial membership into sets, fuzzy sets provide a
flexible and powerful tool for reasoning about uncertain situ-
ations that cannot be adequately expressed by classical sets.
Despite being studied for many years, both fuzzy sets and
their extensions [10, 11, 34] continue to find applications
in various fields, including artificial intelligence [14, 36],
decision making [9, 13, 19, 21], control systems [29, 46],
operations research [17, 23, 24], supply chain [25, 26], pat-
tern recognition [18, 20, 40], and others.

Introduced by the pioneer of fuzzy logic, Zadeh [45], Z-
numbers are an extension of fuzzy numbers that enhance the
representation of uncertainty by incorporating two crucial
components: constraint and reliability. Z-numbers provide
a comprehensive framework for modelling and managing
uncertainty, considering both the degree to which a value
belongs to a set and the degree of confidence associated

with that value. In traditional fuzzy set theory, fuzzy num-
bers are used to represent imprecise or uncertain quantities
by assigning a membership degree to each value. How-
ever, fuzzy numbers primarily focus on capturing the degree
of membership without explicitly considering the reliabil-
ity of membership. On the other hand, Z-numbers extend
the concept of fuzzy numbers by incorporating the concept
of reliability, which reflects the level of certainty or confi-
dence associated with the degree of membership. The degree
of constraint in Z-numbers represents the extent to which
a value belongs to a set, similar to the degree of member-
ship in fuzzy numbers. Conversely, the degree of reliability
in Z-numbers indicates the level of confidence or reliability
associated with the degree of constraint. It reflects the qual-
ity of the data used to determine the reliability or degree of
constraint of available information. The relationship between
Z-numbers and fuzzy numbers can be seen as an extension
or enrichment of fuzzy numbers. By combining both degrees
of constraint and reliability, Z-numbers offer a more nuanced
and comprehensive representation of uncertainty. This addi-
tional information allows for more accurate modelling and
reasoning in uncertain or imprecise domains, enabling better
decision-making processes in complex real-world situations.
Similar to fuzzy sets, Z-numbers have also gained significant
attention in the literature [4, 7, 8, 35, 43].

Complex fuzzy sets (CFSs) are an advanced extension of
fuzzy sets that allow for a more flexible representation of
uncertainty by characterizing membership functions in the
complex plane and introduced by Ramot et al. [31]. CFSs
can represent partial information deficiency of data and its
fluctuations at a certain time stage during execution. Unlike
traditional fuzzy sets, which assignmembership values in the
range of [0, 1], complex fuzzy sets extend the range of mem-
bership values up to the unit circle in the complex plane. In
complex fuzzy sets, the membership function assigns each
element a complex number that represents both the degree
of membership and the phase angle associated with it. The
magnitude of the complex number represents the degree
of membership, while the phase angle captures the uncer-
tainty or ambiguity in a particular direction. By utilizing the
complex plane, complex fuzzy sets can effectively model
situations where uncertainties exhibit directionality or when
there are correlations among different membership degrees.
This allows for a richer and more accurate representation
of complex and uncertain phenomena, enabling improved
reasoning and decision-making processes. Their ability to
capture both the degree of membership and the uncertainty
aspect provides a powerful tool for modelling and analysing
complex systems with imprecise or uncertain information.
Complex fuzzy sets find applications in various fields, includ-
ing image processing [6], decision making [28] and pattern
recognition [27].
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There are cases where Z-numbers and complex fuzzy sets
cannot express and fall short when it comes to decision mak-
ing. We know that CFSs can represent the partial ignorance
of problems and fluctuations at a certain stage of time during
execution, adding a second dimension to fuzzy numbers. We
also know that Z-numbers add to the reliability of the given
fuzzy values. However, we cannot measure the reliability
of complex fuzzy numbers, nor can we use Z-numbers in
multidimensional problems that require simultaneous solu-
tions.Additionally,we can’tmeasure the reliability part of the
Z-numbers. Therefore, the reliability part of the Z-numbers
has to be considered as 1 when expressing the reliability
and performing operations on it and it causes the loss of
information. Especially in companies that trade in the soft-
ware sector, there are points where the known set approaches
are insufficient. For example, suppose a business firm pur-
chases software from a software company. There are four
main parameters here. The software version and updates to
be received are two of them. However, as new versions come
out, the removal of the restriction of the old version or the
reliability of its removal is another parameter. In addition,
how long the updates will be given is another parameter. And
these four parameters need to be processed simultaneously.
Neither CFSs nor Z-numbers can handle such problems since
the problem cannot be expressed by these two approaches.
Motivated by these shortcomings, in this paper, we propose
a new approach that is called Complex fuzzy Z-number
set (CFZNS) that can express and solve these problems.
The CFZN set to be defined consists of two elements such
as Z-numbers, complex restriction, and complex reliability,
respectively. Each element has also two components, com-
plex value, and coefficient of complex angle for complex
restriction, complex reliability, and the coefficient reliability
angle. Therefore, the CFZN set to be defined is a set that can
measure both the constraints and the reliability of the con-
straints in themultidimensional problems. The features of the
CFZNS and the contributions of the article to the literature
can be summarized as follows:

• CFZNS is a new approach to solve the above-mentioned
shortcomings.

• CFZNS is a generalization of both Z-numbers and CFSs.
• Both the operation laws of the CFZNS are investigated and
the score and accuracy functions are given to measure the
relationship of the numbers in this set with each other.

• Two most important and fundamental aggregation oper-
ators are defined, and their desirable properties are dis-
cussed.

• To demonstrate the impact and scope of the proposed set,
a numerical example is given and discussed, which cannot
be expressed with the existing approaches in the literature.

• While the proposedmethod is not specifically designed for
classification tasks, it demonstrates a high classification

rate when applied to a real-world dataset (Iris flower data)
from the UCI Machine Learning Repository.

The rest of the article is organized as follows: In Sect. "Pre-
liminaries", we provide some preliminary information about
fuzzy sets, Z-numbers, complex fuzzy sets, and t-norms. In
Sect. "Complex Fuzzy Z-number Set", we introduce a novel
approach called complex fuzzy Z-number set and present
its properties. Then, we define two basic aggregation opera-
tors with useful properties. In Sect. "Numerical Application
Using CFZNWA and CFZNWG Operators", we present a
numerical example that utilizes the proposed aggregation
operators under the proposedCFZNS, alongwith a validation
test. Then, we compare the proposed approach with reduced
sets and discuss its advantages. In Sect. "Numerical Appli-
cation with a Real Dataset", we evaluate the effectiveness of
CFZNs by applying them to a real-world dataset and then
we compare the results with existing methods to assess the
performance of CFZNs. Finally, in Sect. "Conclusion", we
summarize the study and present our conclusions.

Preliminaries

In this section, some fundamental concepts related to com-
plex fuzzy sets, Z-numbers and their properties are provided.

Definition 1 (Zadeh 1965) A fuzzy set A is defined on a
universe of discourse X as:

A � {〈x , μA(x)〉 : x ∈ X} (1)

where μA : X → [0, 1] is the membership function of the
fuzzy set A and μA(x) is the membership of x ∈ X in A.

Definition 2 (Zadeh 2011) A Z-number is represented as an
ordered pair of fuzzy numbers denoted by

Z � (A, B) (2)

that is associated with a real valued uncertain variable X .
Here, A is a restriction (constraint) on the values which X is
allowed to take and B is a measure of reliability (certainty)
of the first component.

Definition 3 [31] A complex fuzzy set C is defined on a
universe of discourse X as:

C � {〈x , μc(x)〉 : x ∈ X} (3)

where μc is a membership function that assign any x ∈ X
as a complex valued grade of membership. Here, μc(x) �
rc(x)ei2πωc(x) that lies in a unit circle in the complex plane
where i � √−1, μc(x) ∈ [0, 1] and ωc(x) is real valued.
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Definition 4 [16] A function T : [0, 1]× [0, 1] → [0, 1] is
called a t-norm if it satisfies the following conditions:

(1) T (1, x) � x , for all x .

(2) T (x , y) � T (y, x), for allx and y.

(3) T (x , T (y, z)) � T (T (x , y), z), for all x , y, z.

(4) If x ≤ x ′ and y ≤ y′, then T (x , y) ≤ T
(
x ′, y′).

(4)

Definition 5 [16] A function S : [0, 1] × [0, 1] → [0, 1] is
called a t-conorm if it satisfies the following conditions:

(1) S(1, x) � x , for all x .

(2) S(x , y) � S(y, x), for allx and y.

(3) S(x , S(y, z)) � S(S(x , y), z), for all x , y, z.

(4) If x ≤ x ′ and y ≤ y′, then S(x , y) ≤ S
(
x ′, y′).

(5)

The introduction of fuzzy sets required performing alge-
braic operations among fuzzy elements. Executing these
operations with classical algebra would make the defini-
tion of fuzzy sets lose its meaning. Therefore, t-norm and
t-conorm functions were inspired to define fuzzy algebraic
operations. A t-norm function T (x , y) and a t-conorm func-
tion S(x , y) are called Archimedean if they are continuous
and satisfy the conditions T (x , x) < x and S(x , x) > x for
all x ∈ (0, 1). Moreover, Klement and Mesiar [15] defined
the strictly decreasing Archimedean t-norm and t-conorm
using the additive generators g and h respectively as:

T (x , y) � g−1(g(x) + g(y))

S(x , y) � h−1(h(x) + h(y))

where h(t) � g(1 − t) and g : [0, 1] → [0, ∞]. Depending
on the choice of the function g(t), many types of t-norms
and t-conorms can be obtained. If g(t) � −logt , then h(t) �
−log(1− t) and we can get Algebraic t-norm and t-conorm,
which is the basis of fuzzy operations, as follows:

SA(x , y) � x + y − xy, TA(x , y) � xy (6)

Let g(t) � log
( 2−t

t

)
, then h(t) � g(1 − t) �

log
(
2−(1−t
1−t

)
and it follows that g−1(t) � 2

et+1 and that

h−1(t) � 1 − 2
et+1 . Using the additive generators above,

we have Einstein t-norm and t-conorm as:

SE (x , y) � x + y

1 + xy
, TE (x , y) � xy

1 + (1 − x)(1 − y)
(7)

Complex fuzzy Z-number set

The one of the main aims of this work is to introduce the
Complex fuzzy Z-numbers and investigate some of their
properties.

Definition 6 A complex fuzzy Z-number set Zc is defined
on a universe of discourse X as:

Z � {〈x , Cz(x), Rz(x)〉 : x ∈ X} (8)

where Cz : X → {a : a ∈ C, |a| ≤ 1} denotes the com-
plex valued restriction (constraint) and Rz : X →
{a : a ∈ C, |a| ≤ 1} denotes the complex valued measure of
reliability (certainty), given by:

Cz(x) � cz(x)e
2π iωcz (x), Rz(x) � rz(x)e

2π iωrz (x),

and with the conditions:

cz(x), rz(x) ∈ [0, 1] andωcz (x), ωrz (x) ∈ [0, 1]

Then, complex fuzzy Z-numbers can be denoted as pairs
z � 〈ce2π iωc , re2π iωr〉 where c, r ∈ [0, 1] are called
complex value and reliability values, respectively and ωc,
ωr ∈ [0, 1] are called coefficient of complex angle and coef-
ficient of reliability angle, respectively. We use the notation
z � 〈(c, ωc), (r , ωr )〉 for convenience in complex opera-
tions. Note that

• if ωcz (x) � ωrz (x) � 0, then z � 〈ce0, re0〉 � 〈c, r〉,
and CFZNs reduce to Z-numbers, which demonstrates that
CFZNs are a generalization of Z-numbers.

• if Rz(x) � ∅, then CFZNS reduce complex fuzzy sets,
which shows that CFZS is a generalization of complex
fuzzy sets.

Definition 7 Let A � {〈x , CA(x), RA(x)〉 : x ∈ X} and
B � {〈x , CB(x), B(x)〉 : x ∈ X} be two CFZNSs. Then,
the basic operations between them defines as follows:

A ⊆ B if cA(x) ≤ cB(x), rA(x) ≤ rB(x) and ωcA(x)

≤ ωcB (x), ωrA (x) ≤ ωrB (x).

A � B if and only if A ⊆ B and B ⊆ A.

Ac � (
1 − cA, ωcA

)
,
(
1 − rA, ωrA

)
. (9)

Complex fuzzy Z-number operations

We define the complex fuzzy Z-number operations based on
Archimedean t-normand t-conorm inspired byBeliakov et al.
[1]. According to them, we can use any pair of dual t-norm
and t-conorm to define operations.
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Definition 8 Let z1 � 〈(c1, ωc1

)
,

(
r1, ωr1

)〉 and z2 �
〈(c2, ωc2

)
,

(
r2, ωr2

)〉 be two CFZNs and λ is a scalar
withλ > 0. Then the operational laws of CFZNs are defined
as follows:
(1) z1 ⊕ z2

� 〈(SA (c1, c2) , SA (ωc1, ωc2)) , (SE (r1, r2) , SE (ωr 1, ωr 2))〉

�
〈 (

h−1
A (hA (c1) + hA (c2)) , h

−1
A (hA (ωc1) + hA (ωc2))

)
,

(
h−1
E (hE (r1) + hE (r2)) , h

−1
E (hE (ωr 1) + hE (ωr 2))

)
〉

(2) z1 ⊗ z2

� 〈(TA (c1, c2) , TA (ωc1, ωc2)) , (TE (r1, r2) , TE (ωr 1, ωr 2))〉

�
〈 (

g−1
A (gA (c1) + gA (c2)) , g

−1
A (gA (ωc1) + gA (ωc2))

)
,

(
g−1
E (gE (r1) + gE (r2)) , g

−1
E (gE (ωr 1) + gE (ωr 2))

)
〉

(3) λz1 �
〈(
h−1
A (λhA(c1)) , h

−1
A (λhA(ωc1))

)
,

(
h−1
E (λhE (r1)) , h

−1
E (λhE (ωr 1))

)〉

(10)

(4) zλ1 �
〈(
g−1
A (λgA(c1)) , g

−1
A (λgA(ωc1))

)
,

(
g−1
E (λgE (r1)) , g

−1
E (λgE (ωr 1))

)〉

If we choose gA(t) � −logt and gE (t) � log2−t
t , then

we have the operations in Eq. (11).

Definition 9 Let z1 � 〈(c1, ωc1

)
,

(
r1, ωr1

)〉 and z2 �
〈(c2, ωc2

)
,

(
r2, ωr2

)〉 be two CFZNs and λ is a scalar
withλ > 0. Then the operational laws of CFZNs are defined
as follows:

(1) z1 ⊕ z2 �
〈(

1 −
2∏

i�1

(1 − ci ) , 1 −
2∏

i�1

(
1 − ωci

)
)

,

(
r1 + r2

1 + r1 · r2 ,
ωr1 + ωr2

1 + ωr1 · ωr2

)〉

(2) z1 ⊗ z2 �
〈(

2∏

i�1

ci ,
2∏

i�1

ωci

)

,

(
r1 · r2

1 + (1 − r1) + (1 − r2)
,

ωr1 · ωr2

1 +
(
1 − ωr1

)
+

(
1 − ωr2

)

)〉

(3) λz1 �
〈
(
1 − (1 − c1)

λ, 1 − (
1 − ωc1

)λ
)
,

((
1 + ωr1

)λ − (
1 − ωr1

)λ

(
1 + ωr1

)λ +
(
1 − ωr1

)λ
,

(
1 + ωr1

)λ − (
1 − ωr1

)λ

(
1 + ωr1

)λ +
(
1 − ωr1

)λ

)〉

(4) zλ1 �
〈
(
rλ
1 , ωc1

λ
)
,

(
2rλ

1

(2 − r1)λ + rλ
1

,
2ωλ

r1(
2 − ωr1

)λ + ωλ
r1

)〉

(11)

Theorem 1 Let z1 � 〈(c1, ωc1

)
,

(
r1, ωr1

)〉 and z2 �
〈(c2, ωc2

)
,
(
r2, ωr2

)〉 be two CFZNs and λ > 0 be a real
number. Then, zc1, z1 ⊕ z2, z1 ⊗ z2, λz1 and zλ1 are also
CFZNs.

Proof Since item 1 is obvious, and others are easy to see, we
prove only item 2. Also, recall that 0 ≤ c1, c2 ≤ 1, 0 ≤ ωc1 ,
ωc2 ≤ 1, 0 ≤ r1, r2 ≤ 1 and 0 ≤ ωr1 , ωr2 ≤ 1,

For item 2, first, we show the constraint part of the CFZN.
Since 0 ≤ 1 − c1 ≤ 1 and 0 ≤ 1 − c2 ≤ 1, we have 0 ≤∏2

i�1(1 − ci ) ≤ 1which implies 0 ≤ 1−∏2
i�1(1 − ci ) ≤ 1.

Additionally, 0 ≤ 1 − ωc1 ≤ 1 and 0 ≤ 1 − ωc2 ≤ 1 and
thus, we have 0 ≤ ∏2

i�1

(
1 − ωci

) ≤ 1, which also implies

0 ≤ 1 − ∏2
i�1

(
1 − ωci

) ≤ 1.
To see the reliability part, we have 0 ≤ r1 + r2 ≤ 2 and

1 ≤ 1 + r1r2 ≤ 2. Then, it concludes that 0 ≤ r1+r2
1+r1·r2 ≤ 1.

Since the operations are same for ω we have 0 ≤ ωr1+ωr2
1+ωr1 ·ωr2

≤
1. Therefore z1 ⊕ z2 is also a CFZN.

Theorem 2 Let z1, z2 and z3 be three CFZNs. Then, the
following equations are hold:

(1) z1 ⊕ z2 � z2 ⊕ z1

(2) z1 ⊗ z2 � z2 ⊗ z1

(3) (z1 ⊕ z2) ⊕ z3 � z1 ⊕ (z2 ⊕ z3)

(4) (z1 ⊗ z2) ⊗ z3 � z1 ⊗ (z2 ⊗ z3) (12)

Theorem 3 Let z1 and z2 be two CFZNs and λ, λ1 and λ2
be three positive real numbers. Then, following equations are
hold:

(1) λ(z1 ⊕ z2) � λz1 ⊕ λz2

(2) (z1 ⊗ z2)
λ � zλ1 ⊗ zλ2

(3) (λ1 + λ2)z1 � λ1z1 ⊕ λ2z1

(4)zλ1+λ2
1 � zλ11 ⊗ zλ21 (13)

To compare CFZNs we need a function to measure them.
When looking at previous works related to fuzzy complex
numbers, this function is defined as the sum of the com-
plex value and the coefficient of the complex angle, which in
our case are c and ωc. The same situation applies to IFSs.
However, considering the Z-numbers, we need extended
operations to measure them. Since the second part is the reli-
ability part of the first part in a CFZN, the score function
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can be defined as an expanded form of complex fuzzy num-
bers. On the other hand, if the scores of two different CFZNs
are equal, the comparison becomes more complicated. For
two CFZNs with equal scores, if their reliability values are
equal, the reasonable approach is that the one with the larger
complex value is considered the larger number. Similarly, for
two equal CFZNs, if the complex values are the same, the
one with the larger reliability value is considered the larger
number.

Definition 10 Let z � 〈(c, ωc), (r , ωr )〉 be a CFZN.
Then, the score function of z is defined asS(z) �
1
4 (c + ωc) · (r + ωr ). If the score of twoCFZNs is equal, then.

• If the reliability values are same, the C-accuracy function
is defined as CV (z) � c.

• If the complex values are same, the R-accuracy function
defined as RV (z) � r .

where S(z), CV (z), RV (z) ∈ [0, 1]. To compare two
CFZNs z1 and z2, the following algorithm can be given:

(1) If S(z1) > S(z2), then z1 > z2.
(2) If S(z1) � S(z2) and
(i) If rz1 � rz2 and

a. If CV (z1) > CV (z2) then z1 > z2

b. If CV (z1) � CV (z2) then z1 � z2
(14)

(ii) If cz1 � cz2 and
(c) If RV (z1) > RV (z2) then z1 > z2

(d) If RV (z1) � RV (z2) then z1 � z2

Example 1 Let z1 � 〈(0.5, 0.3), (0.4, 0.8)〉 andz2 �
〈(0.4, 0.3), (0.6, 0.8)〉. Then, the score values are calcu-
lated as s(z1) � 0.5 × 0.4 + 0.3 × 0.8 � 0.44 ands(z2) �
0.4× 0.6 + 0.3× 0.8 � 0.48. We obtains(z1) ≤ s(z2), even
though the first part of z1 is greater than the first part ofz2.
This is because the reliability of z1 is lower than the reliabil-
ity of z2. This is consistent with the nature of the Z-numbers
defined by Zadeh [45].

Example 2 Letz1 � 〈(0.7, 0.3), (0.6, 0.4)〉, z2 �
〈(0.7, 0.3), (0.7, 0.3)〉 andz3 � 〈(0.5, 0.5), (0.6, 0.4)〉.
Then the score values areS(z1) � S(z2) � S(z3) � 0.25.
Then, sincerz1 � rz3, CV (z1) � 0.7 andCV (z3) � 0.5,
we getz1 > z3. Additionally, sincecz1 � cz2, RV (z1) � 0.6
andRV (z2) � 0.7, we havez2 > z1. Therefore, we havez2 >

z1 > z3.

Complex fuzzy Z-number aggregation operators

Fuzzy sets in a fuzzy environment consist of multiple uncer-
tain elements. Similar to classical sets, there is a need for
certain operators to handle such a group of numbers. The
most fundamental and important operators in classical sets
are the arithmetic mean and geometric mean operators. The
fuzzy equivalent of these operations in fuzzy environments
is represented by aggregation operators. The existence of
these operators is inevitable to utilize sets in fuzzy envi-
ronments that involve multiple elements in applications. By
using algebraic operations, these operators are generalized,
making them suitable for applications, especially in deci-
sion matrices, by reducing the data of many elements to a
single entity, thereby enabling the measurement of data in
fuzzy environments. Therefore, to process CFZNs in deci-
sion matrices in applications, in this section we will define
the two most basic aggregation operators and examine their
properties. In order to avoid redundancy in the definitions
presented, we will use the notation Z to represent the set of
all conceivable CFZNs.

Definition 11 Let zi (i � 1, 2, . . . , n) be a collection of
CFZNs. A complex fuzzy Z-number weighted averaging
(CFZNWA) operator is a mapping CFZNW A : Zn → Z
defined by

CFZNW A(z1, z2, . . . , zn)

� ⊕n
i�1(αi zi )

� α1z1 ⊕ α2z2 ⊕ . . . ⊕ αnzn (15)

where αi � (α1, α2, . . . , αn) is the weight vector of zi with
αi ∈ [0, 1] and

∑n
i�1 αi � 1. If the weight vector is taken

as αi � ( 1
n ,

1
n , . . . , 1

n

)
, the CFZNWA operator reduces to

complex fuzzy Z-number averaging (CFZNA) operator as

CFZN A(z1, z2, . . . , zn) � ⊕n
i�1zi .

Theorem 4 Let zi (i � 1, 2, . . . , n) be a collection of
CFZNs. Then, the CFZNWA operator is also a CFZN and
can be expressed as

CFZNW A (z1, z2, . . . , zn)

�
〈 (

1 − ∏n
i�1 (1 − ci )αi , 1 − ∏n

i�1

(
1 − ωci

)αi
)
,(∏n

i�1 (1+ri )αi −∏n
i�1 (1−ri )αi∏n

i�1 (1+ri )αi +
∏n

i�1 (1−ri )αi
,

∏n
i�1

(
1+ωri

)αi −∏n
i�1

(
1−ωri

)αi
∏n

i�1
(
1+ωri

)αi +
∏n

i�1
(
1−ωri

)αi

)
〉

(16)

Proof From Theorem 1, since the results all operations on
CFZNs are also CFZN, it is obvious that the CFZNWA oper-
ator is also a CFNZ. To prove Eq. (16), we use the principle
of mathematical induction on n.

I. For n � 1, then it is obvious that the equation holds.
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II. Assume that the Eq. (16) holds for n � k > 2:

CFZNW A (z1, z2, . . . , zk)

�
〈

(
1 − ∏k

i�1 (1 − ci )αi , 1 − ∏k
i�1

(
1 − ωci

)αi
)
,

(∏n
i�1 (1+ri )αi −∏n

i�1 (1−ri )αi∏n
i�1 (1+ri )αi +

∏n
i�1 (1−ri )αi

,
∏n

i�1
(
1+ωri

)αi −∏n
i�1

(
1−ωri

)αi
∏n

i�1
(
1+ωri

)αi +
∏n

i�1
(
1−ωri

)αi

)
〉

III. For n � k + 1, we need to show that
CFZNW A(z1, z2, . . . , zk , zk+1) holds for Eq. (15):

CFZNW A (z1, z2, . . . , zk , zk+1)

� CFZNW A (z1, z2, . . . , zk) ⊕ αk+1zk+1

�
〈 (

1 − ∏k
i�1 (1 − ci )αi , 1 − ∏k

i�1

(
1 − ωci

)αi
)
,

(∏n
i�1 (1+ri )αi −∏n

i�1 (1−ri )αi∏n
i�1 (1+ri )αi +

∏n
i�1 (1−ri )αi

,
∏n

i�1
(
1+ωri

)αi −∏n
i�1

(
1−ωri

)αi
∏n

i�1
(
1+ωri

)αi +
∏n

i�1
(
1−ωri

)αi

)
〉

⊕ 〈(
1 − (1 − ck+1)

αk+1 , 1 − (1 − ωk+1)
αk+1

)
, (rk+1, ωr k+1)

〉

For the first part (restriction), using Eq. (11) we have:

CFZNW A (z1, z2, . . . , zk) ⊕ αk+1zk+1

�
⎛

⎝
1 −

(
1 − ∏k

i�1 (1 − ci )αi
)

(1 − (1 − ck+1)αk+1) ,

1 −
(
1 − ∏k

i�1

(
1 − ωci

)αi
)

(1 − (1 − ωk+1)
αk+1)

⎞

⎠

If we expand this statement, we have:

CFZNW A (z1, z2, . . . ,

zk) ⊕ αk+1zk+1 �
⎛

⎝

(
1 − ∏k+1

i�1 (1 − ci )αi
)
,

(
1 − ∏k+1

i�1

(
1 − ωci

)αi
)

⎞

⎠

For the second part (reliability), let x1 � ∏k
i�1 (1 + ri )αi ,

y1 � ∏k
i�1 (1 − ri )αi , x2 � (1 + rk+1)αk+1 and

y2 � (1 − rk+1)αk+1 . Also, same for ωci let ωx1 �∏k
i�1

(
1 + ωci

)αi , ωy1 � ∏k
i�1

(
1 − ωci

)αi , ωx2 �(
1 + ωck+1

)αk+1 and ωy2 � (
1 − ωck+1

)αk+1 . We can rewrite
the followings as:

CFZNW A(z1, z2, . . . , zk)

�
(
x1 − y1
x1 + y1

,
ωx1 − ωy1
ωx1 + ωy1

)
, αk+1zk+1

�
(
x2 − y2
x2 + y2

,
ωx2 − ωy2
ωx2 + ωy2

)

Using the operational law inEq. (11),weget the following:

CFZNW A (z1, z2, . . . , zk) ⊕ αk+1zk+1

�
( x1−y1

x1+y1
+ x2−y2

x2+y2

1 + x1−y1
x1+y1

· x2−y2
x2+y2

,

ωx1−ωy1
ωx1+ωy1

+ ωx2−ωy2
ωx2+ωy2

1 + ωx1−ωy1
ωx1+ωy1

· ωx2−ωy2
ωx2+ωy2

)

�
(
x1x2 − y1y2
x1x2 + y1y2

,
ωx1ωx2 − ωy1ωy2
ωx1ωx2 + ωy1ωy2

)

�
(∏k+1

i�1 (1 + ri )αi − ∏k+1
i�1 (1 − ri )αi

∏k+1
i�1 (1 + ri )αi +

∏k+1
i�1 (1 − ri )αi

,

×
∏k+1

i�1

(
1 + ωri

)αi − ∏k+1
i�1

(
1 − ωri

)αi

∏k+1
i�1

(
1 + ωri

)αi +
∏k+1

i�1

(
1 − ωri

)αi

)

Therefore, Eq. (16) hold for all n and it completes the
proof.

Aggregation operators on fuzzy environment should sat-
isfy some fundamental mathematical properties. The devel-
oped CFZNW A operator also meets the same specifica-
tions. To demonstrate these features and avoid repetition, let
zi (i � 1, 2, . . . , n) be a collection of CFZNs and αi �
(α1, α2, . . . , αn) is the weight vector of zi with αi ∈ [0, 1]
and

∑n
i�1 αi � 1.

Property 1 (Idempotency). If all zi are equal, i.e., zi � z �
〈(c, ωc), (r , ωr )〉 for all i, then.

CFZNW A (z1, z2, . . . , zn)� α1z1⊕α2z2⊕. . .⊕αnzn � z.

(17)

Proof Since zi � z for all i � 1, 2, . . . , n, we have

CFZNW A (z1, z2, . . . , zn)

�
〈 (

1 − ∏n
i�1 (1 − ci )αi , 1 − ∏n

i�1

(
1 − ωci

)αi
)
,(∏n

i�1 (1+ri )αi −∏n
i�1 (1−ri )αi∏n

i�1 (1+ri )αi +
∏n

i�1 (1−ri )αi
,

∏n
i�1

(
1+ωri

)αi −∏n
i�1

(
1−ωri

)αi
∏n

i�1
(
1+ωri

)αi +
∏n

i�1
(
1−ωri

)αi

)
〉

�
〈

(
1 − (1 − ci )

∑n
i�1 αi , 1 − (1 − wci )

∑n
i�1 αi

)
,

(
(1+ri )

∑n
i�1 αi −(1−ri )

∑n
i�1 αi

(1+ri )
∑n

i�1 αi +(1−ri )
∑n

i�1 αi
,

(
1+ωri

)∑n
i�1 αi −(

1−ωri

)∑n
i�1 αi

(
1+ωri

)∑n
i�1 αi +

(
1−ωri

)∑n
i�1 αi

)
〉

�
〈

(ci , wci ) ,(
(1+ri )−(1−ri )
(1+ri )+(1−ri )

,
(
1+ωri

)−(
1−ωri

)
(
1+ωri

)
+
(
1−ωri

)

) 〉 � 〈(c, ωc) , (r , ωr )

〉

� z

Property 2 (Monotonicity). Let zi � 〈(
ci , ωci

)
,
(
ri , ωri

)〉

and z∗i � 〈(c∗
i , ω∗

ci

)
,
(
r∗
i , ω∗

ri

)〉 be two collection of CFZNs
wherei � 1, 2, . . . n. zi ≤ z∗i for alli , i.e.,ci ≤ c∗

i ,ri ≤ r∗
i ,

ωci ≤ ω∗
ci andωri ≤ ω∗

ri , then.

CFZNW A(z1, z2, . . . , zn) ≤ CFZNW A
(
z∗1, z∗2, . . . , z∗n

)
.

(18)

Note that since the second part is reliability, it should be
ri ≤ r∗

i and ωri ≤ ω∗
ri . Otherwise, there would be no differ-

ence from IFNs.
Proof . We prove this property in two parts, restriction

and reliability, to avoid confusion. For restriction part of
CFZNWA operator, we have ci ≤ c∗

i and ωci ≤ ω∗
ci for all i .

We can write them as 1− ci ≥ 1− c∗
i and 1−ωci ≥ 1−ω∗

ci ,
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and then we have

n∏

i �1

(1 − ci )
αi ≥

n∏

i�1

(
1 − c∗

i

)αi and
n∏

i�1

(
1 − ωci

)αi

≥
n∏

i�1

(
1 − ωc

∗
i

)αi

since αi ∈ [0, 1]. Thus, we can write

1 −
n∏

i �1

(1 − ci )
αi ≤ 1 −

n∏

i�1

(
1 − c∗

i

)αi and1

−
n∏

i�1

(
1 − ωci

)αi ≤ 1−
n∏

i�1

(
1 − ωc

∗
i

)αi

which end the first part of proof. For the reliability part of
CFZNWA operator, we have ri ≤ r∗

i and ωri ≤ ω∗
ri for all

i . Let f (r) � 1−r
1+r and g(ω) � 1−ω

1+ω
where r , ω ∈ [0, 1].

It is obvious that both f and g are decreasing functions.
Therefore, if ri ≤ r∗

i and ωri ≤ ω∗
ri for all i � 1, 2, . . . n,

then f (ri ) ≥ f
(
r∗
i

)
and g(ωi ) ≥ g(ω∗

i ), i.e.,
1−ri
1+ri

≥ 1−r∗
i

1+r∗
i

and 1−ωi
1+ωi

≥ 1−ω∗
i

1+ω∗
i
. Using the weight vector αi , we have

(
1−ri
1+ri

)αi ≥
(
1−r∗

i
1+r∗

i

)αi
and

(
1−ωi
1+ωi

)αi ≥
(
1−ω∗

i
1+ω∗

i

)αi
. Then,

these expressions can be written as products for i � 1, 2,
. . . n and we have

n∏

i �1

(
1 − ri
1 + ri

)αi

≥
n∏

i�1

(
1 − r∗

i

1 + r∗
i

)αi

and
n∏

i�1

(
1 − ωi

1 + ωi

)αi

≥
n∏

i�1

(
1 − ω∗

i

1 + ω∗
i

)αi

.

Since the following operations are same for ri and ωi , we
only show for ri .

n∏

i �1

(
1 − ri
1 + ri

)αi

≥
n∏

i�1

(
1 − r∗

i

1 + r∗
i

)αi

⇐⇒ 1+
n∏

i�1

(
1 − ri
1 + ri

)αi

≥ 1 +
n∏

i�1

(
1 − r∗

i

1 + r∗
i

)αi

⇐⇒ 1

1 +
∏n

i�1

(
1−ri
1+ri

)αi

≤ 1

1 +
∏n

i�1

(
1−r∗

i
1+r∗

i

)αi

⇐⇒ 2

1 +
∏n

i�1

(
1−ri
1+ri

)αi

≤ 2

1 +
∏n

i�1

(
1−r∗

i
1+r∗

i

)αi

⇐⇒ 2

1 +
∏n

i�1

(
1−ri
1+ri

)αi
− 1

≤ 2

1 +
∏n

i�1

(
1−r∗

i
1+r∗

i

)αi
− 1

⇐⇒
∏n

i�1 (1 + ri )αi − ∏n
i�1 (1 − ri )αi∏n

i�1 (1 + ri )αi +
∏n

i�1 (1 − ri )αi

≤
∏n

i�1

(
1 + r∗

i

)αi − ∏n
i�1

(
1 − r∗

i

)αi

∏n
i�1

(
1 + r∗

i

)αi +
∏n

i�1

(
1 − r∗

i

)αi

which end the second part of proof. Thus, from the first and
second part of the proofs we have

CFZNW A(z1, z2, . . . , zn) ≤ CFZNW A
(
z∗1, z∗2, . . . , z∗n

)

Property 3 (Boundedness) Let zi � 〈(ci , ωci

)
,
(
ri , ωri

)〉
be a collection of CFZNs where i � 1, 2, . . . , n and.

z− �
〈(

min
i
ci , min

i
ωci

)
,

(
min
i
ri , min

i
ωri

)〉

z+ �
〈(

max
i

ci , max
i

ωci

)
,

(
max
i
ri , max

i
ωri

)〉

Then,

z− ≤ CFZNW A(z1, z2, . . . , zn) ≤ z+ (19)

Proof We prove for ci and ri , since the opera-
tions are same for ωci and ωri , respectively. Let
CFZNW A(z1, z2, . . . , zn) � 〈(c, ωc), (r , ωr )〉. To avoid
confusion caused by the complexity of the equations and
ensure its fluency, we divide the proof into two parts, restric-
tion and reliability, as we did in Property 2. For the first part,
we have min

i
ci ≤ ci ≤ max

i
ci and min

i
ωci ≤ ωci ≤ max

i
ωci .

Since the following operations are same for ci and ωci , we
only show for ci . Then,

⇐⇒ 1−min
i
ci ≥ 1−ci ≥ 1−max

i
ci ⇐⇒

(
1 − min

i
ci

)αi

≥ (1 − ci )
αi ≥

(
1 − max

i
ci

)αi

⇐⇒
n∏

i�1

(
1 − min

i
ci

)αi

≥
n∏

i�1

(1 − ci )
αi ≥

n∏

i�1

(
1 − max

i
ci

)αi

⇐⇒
(
1 − min

i
ci

)∑n
i�1 αi

≥
n∏

i�1

(1 − ci )
αi

≥
(
1 − max

i
ci

)∑n
i�1 αi

⇐⇒ 1 − min
i
ci ≥

n∏

i�1

(1 − ci )
αi

≥ 1 − max
i

ci ⇐⇒ min
i
ci ≤ 1 −

n∏

i�1

(1 − ci )
αi ≥ max

i
ci
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which ends the first part of the proof. For the reliability part,
let f (r) � 1−r

1+r and g(ω) � 1−ω
1+ω

where r , ω ∈ [0, 1].
It is obvious that both f and g are decreasing functions.
Since min

i
ri ≤ ri ≤ max

i
ri and min

i
ωri ≤ ωri ≤ max

i
ωri

for all i , then we have f

(
min
i
ri

)
≥ f (ri ) ≥ f

(
max
i
ri

)

and g

(
min
i

ωri

)
≥ g

(
ωri

) ≥ g

(
max
i

ωri

)
which can also be

written as:

1 − min
i
ri

1 + min
i
ri

≥ 1 − ri
1 + ri

≥
1 − max

i
ri

1 + max
i
ri
and

1 − min
i

ωri

1 + min
i

ωri

≥ 1 − ωri

1 + ωri
≥

1 − max
i

ωri

1 + max
i

ωri

Since the following operations are same for ri and ωi , we
only show for ri . Using the weight vector αi , we have

⎛

⎝
1 − min

i
ri

1 + min
i
ri

⎞

⎠

αi

≥
(
1 − ri
1 + ri

)αi

≥
⎛

⎝
1 − max

i
ri

1 + max
i
ri

⎞

⎠

αi

⇔
n∏

i�1

⎛

⎝
1 − min

i
ri

1 + min
i
ri

⎞

⎠

αi

≥
n∏

i�1

(
1 − ri
1 + ri

)αi

≥
n∏

i�1

⎛

⎝
1 − max

i
ri

1 + max
i
ri

⎞

⎠

αi

⇔
⎛

⎝
1 − min

i
ri

1 + min
i
ri

⎞

⎠

∑n
i�1 αi

≥
n∏

i�1

(
1 − ri
1 + ri

)αi

≥
⎛

⎝
1 − max

i
ri

1 + max
i
ri

⎞

⎠

∑n
i�1 αi

⇔
1 − min

i
ri

1 + min
i
ri

≥
n∏

i�1

(
1 − ri
1 + ri

)αi

≥
1 − max

i
ri

1 + max
i
ri

⇔ 1

1 +
1−min

i
ri

1+min
i
ri

≤ 1

1 +
∏n

i�1

(
1−ri
1+ri

)αi

≤ 1

1 +
1−max

i
ri

1+max
i
ri

⇔
1 + min

i
ri

2

≤ 1

1 +
∏n

i�1

(
1−ri
1+ri

)αi
≤

1 + max
i
ri

2

⇔ min
i
ri ≤ 2

1 +
∏n

i�1

(
1−ri
1+ri

)αi
− 1

≤ max
i
ri ⇔ min

i
ri

≤
∏n

i�1 (1 + ri )αi − ∏n
i�1 (1 − ri )αi∏n

i�1 (1 + ri )αi +
∏n

i�1 (1 − ri )αi

≤ max
i
ri

which end the second part of proof. Thus, from the first and
second part of the proofs we have

z− ≤ CFZNW A(z1, z2, . . . , zn) ≤ z+

Definition 12 Let zi (i � 1, 2, . . . , n) be a collection of
CFZNs. A complex fuzzy Z-number weighted geometric
(CFZNWG) operator is a mapping CFZNWG : Zn → Z
defined by.

CFZNWG(z1, z2, . . . , zn)

� ⊗n
i�1(zi )

αi

� zα11 ⊗ zα22 ⊗ . . . ⊗ zαnn (20)

where αi � (α1, α2, . . . , αn) is the weight vector of zi with
αi ∈ [0, 1] and

∑n
i�1 αi � 1. If the weight vector is taken

as αi � ( 1
n ,

1
n , . . . , 1

n

)
, the CFZNWG operator reduces to

complex fuzzy Z-number geometric (CFZNG) operator as

CFZNG(z1, z2, . . . , zn) � ⊗n
i�1zi .

Theorem 5 Let zi (i � 1, 2, . . . , n) be a collection of
CFZNs. Then, the CFZNWG operator is also a CFZN and
can be expressed as

CFZNWG (z1, z2, . . . , zn)

�
〈 (∏n

i�1 (ci )αi ,
∏n

i�1

(
ωci

)αi
)
,(

2
∏n

i�1 (ri )αi∏n
i�1 (2−ri )αi +

∏n
i�1 (ri )αi

,
2

∏n
i�1

(
ωri

)αi
∏n

i�1
(
2−ωri

)αi +
∏n

i�1
(
ωri

)αi

)
〉

(21)

Proof It is similar to proof of theorem 4 given in Eq. (16).

The introduced CFZNWG operator also holds the same
specifications. To show these features and avoid repetition,
let zi (i � 1, 2, . . . , n) be a collection of CFZNs and αi �
(α1, α2, . . . , αn) is the weight vector of zi with αi ∈ [0, 1]
and

∑n
i�1 αi � 1.

Property 1 (Idempotency). If all zi are equal, i.e., zi � z �
〈(c, ωc), (r , ωr )〉 for all i, then

CFZNWG(z1, z2, . . . , zn) � zα ⊗ zα ⊗ . . . ⊗ zα � z.
(22)

Property 2 (Monotonicity). Let zi � 〈(ci , ωci

)
,
(
ri , ωri

)〉
and z∗i � 〈(c∗

i , ω∗
ci

)
,
(
r∗
i , ω∗

ri

)〉 be two collection of CFZNs
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wherei � 1, 2, . . . n. zi ≤ z∗i for alli , i.e.,ci ≤ c∗
i ,ri ≤ r∗

i ,
ωci ≤ ω∗

ci andωri ≤ ω∗
ri , then.

CFZNWG(z1, z2, . . . , zn) ≤ CFZNWG
(
z∗1, z∗2, . . . , z∗n

)
.

(23)

Property 3 (Boundedness) Let zi � 〈(
ci , ωci

)
,
(
ri , ωri

)〉
be

a collection of CFZNs where i � 1, 2, . . . , n and

z− �
〈(

min
i
ci , min

i
ωci

)
,

(
min
i
ri , min

i
ωri

)〉
z+

�
〈(

max
i

ci , max
i

ωci

)
,

(
max
i
ri , max

i
ωri

)〉

Then,

z− ≤ CFZNWG(z1, z2, . . . , zn) ≤ z+ (24)

These properties of the CFZNWG aggregation operator
can be easily proved using the techniques in the proof of
properties of the CFZNWA aggregation operator.

Example 3 Let there are four CFZNs z1 � 〈(0.6, 0.5),
(0.4, 0.3)〉, z2 � 〈(0.8, 0.3), (0.5, 0.2)〉, z3 � 〈(0.4, 0.2),
(0.4, 0.5)〉 and z4 � 〈(0.5, 0.1), (0.8, 0.3)〉, and α �
(0.3, 0.4, 0.2, 0.1) be their weight vector. Using the Eq. (16)
for CFZNWA operator we compute:

1 −
4∏

i �1

(1 − ci )
αi

� 1 − (1 − 0.6)0.3 × (1 − 0.8)0.4

× (1 − 0.4)0.2 × (1 − 0.5)0.1

� 0.66381 −
4∏

i�1

(
1 − ωci

)αi � 1 − (1 − 0.5)0.3

× (1 − 0.3)0.4 × (1 − 0.2)0.2 × (1 − 0.1)0.1

� 0.3335

∏4
i�1 (1 + ri )αi − ∏4

i�1 (1 − ri )αi
∏4

i�1 (1 + ri )αi +
∏4

i�1 (1 − ri )αi

� 1.4758 − 0.4998

1.4758 + 0.4998
� 0.9760

1.9756

� 0.4940

∏n
i�1

(
1 + ωri

)αi − ∏n
i�1

(
1 − ωri

)αi

∏n
i�1

(
1 + ωri

)αi +
∏n

i�1

(
1 − ωri

)αi

� 1.2956 − 0.6903

1.2956 + 0.6903
� 0.6053

1.9859
� 0.3048

Therefore, we get:

CFZNW A (z1, z2, z3, z4) � 〈(0.6638, 0.3335) ,
(0.4940, 0.3048)〉

It is obvious that the result is also CFZN. Similarly, using
the Eq. (21) for CFZNWG operator, we compute:

4∏

i �1

(ci )
αi � 0.60.3 × 0.80.4 × 0.40.2 × 0.50.1

� 0.6095
4∏

i�1

(ωi )
αi

� 0.50.3 × 0.30.4 × 0.20.2 × 0.10.1

� 0.2889
2

∏n
i�1 (ri )

αi

∏n
i�1 (2 − ri )αi +

∏n
i�1 (ri )

αi

� 2 × 0.4687

1.5150 + 0.4687

� 0.4726
2

∏n
i�1

(
ωri

)αi

∏n
i�1

(
2 − ωri

)αi +
∏n

i�1

(
ωri

)αi

� 2 × 0.2825

1.6963 + 0.2825
� 0.2855

Therefore, we get:

CFZNWG(z1, z2, z3, z4) � 〈(0.6095, 0.2889),
(0.4726, 0.2855)〉

We can see that the result of CFZNWG operator is also a
CFZN.

Numerical application using CFZNWA
and CFZNWG operators

In this section, we present a MCDM approach based
on CFZNWA and CFZNWG operators under the CFZN
environment. Suppose there are m alternatives A �
{A1, A2, . . . , Am} and n criteria C � {C1, C2, . . . , Cn} for
a MCDM problem which are in the form of CFNZs. The set
of criteria C is divided into two discrete set which are called
the benefit set I and the cost set J where I ∩ J � ∅ and
I ∪ J � C . Let αi � (α1, α2, . . . , αn) be the weight vector
of the n criteria with αi ∈ [0, 1] and

∑n
i�1 αi � 1. Then, the

steps of the constructed MCDM are given as follows:
Step 1. Obtain the evolution information under CFZNs

and construct the decision matrix D(zi )m×n :

D �

C1 C2 . . . Cn

A1

A2

. . .

Am

⎛

⎜⎜⎜
⎜
⎝

z11 z12 · · · z1n
z21 z22 . . . z2n
...

...
. . .

...
zm1 zm2 · · · zmn

⎞

⎟⎟⎟
⎟
⎠
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Step 2. Normalize the decision matrix D(zi )m×n using the
following equation:

Ni j �
{

〈(ci , ωci

)
,
(
ri , ωri

)〉, i f C j ∈ I
〈(1 − ci , ωci

)
,
(
1 − ri , ωri

)〉, i f C j ∈ J

Step 3. Aggregate the normalized decisionmatrix N based
on CFZNWA or CFZNWG aggregation operators with a
given weight vector using the following equations:

(25)Ri � CFZNW A (zi1, zi2, . . . , zin)

�
〈

(
1 − ∏n

j�1

(
1 − c j

)α j , 1 − ∏n
j�1

(
1 − ωc j

)α j
)
,

(
∏n

j�1 (1+r j )
α j −∏n

j�1 (1−r j )
α j

∏n
j�1 (1+r j )

α j +
∏n

j�1 (1−r j )
α j ,

∏n
j�1

(
1+ωr j

)α j −∏n
j�1

(
1−ωr j

)α j

∏n
j�1

(
1+ωr j

)α j
+
∏n

j�1

(
1−ωr j

)α j

)
〉

(26)Ri � CFZNWG (zi1, zi2, . . . , zin)

�
〈

(∏n
j�1

(
c j

)α j ,
∏n

j�1

(
ωc j

)α j
)
,

(
2

∏n
j�1

(
r j

)α j
∏n

j�1
(
2−r j

)α j +
∏n

j�1
(
r j

)α j ,
2

∏n
j�1

(
ωr j

)α j

∏n
j�1

(
2−ωr j

)α j
+
∏n

j�1

(
ωr j

)α j

)
〉

Step 4. Calculate the score values of Ri for i � 1, 2, . . . ,
m using the score function as:

S(Ri ) � 1

4

(
ci + ωci ) · (ri + ωri

)
(27)

If there are any equality, use the algorithmgiven inEq. (14)
to compare Ri values.

Step 5. Rank the alternatives.

A case study

Unmanned Aerial Vehicles (UAVs) are autonomous or
remotely controlled aircrafts that can operate without a
human pilot. These aircraft have gained significant popular-
ity and applications in a variety of industries and sectors due
to their versatility, manoeuvrability, and cost-effectiveness.
UAVs are equippedwith advanced technologies such as cam-
eras, communication systems, and sensors to performvarious
tasks. While Unmanned Combat Aerial Vehicles (UCAVs)
are mostly used for military operations, they can also be uti-
lized for aerial photography and videography, surveillance
andmonitoring, search and rescue operations, agriculture and
environmental monitoring, as well as transportation. Turkey,
on the other hand, has made significant advancements in
this field in recent years. An independent technology com-
pany is developing UAVs and UCAVs technology with the
request and support of the Ministry of Defence and the Turk-
ish Space Agency. As these developments continue, ongoing
efforts are beingmade to enhance their capabilities, including
increasing flight endurance, improving obstacle avoidance
systems, and enabling autonomous decision-making. There-
fore, there are numerous models available to cater to various

requirements. Additionally, countries that do not possess
this technology seek to acquire these vehicles for defence
purposes and other applications such as rescue missions.
However, despite the independence of the UAV-producing
company, it is improbable for such agreements to be reached
without the approval of the Ministry of Defence, aligning
with national interests. Consequently, during the sales phase,
the Ministry of Defence has the authority to restrict the
technologies included in the models to be sold. Because no
country wants its newest technology to pass into the hands
of any foreign institution. For this reason, it is very impor-
tant for the purchasing institution to choose the best possible
alternative.

In this example, we’re using features from a model that
a country’s defence ministry want as criteria, based on the
attributes in the examples used by Garg [5] and Jia et al. [12].
This country’s defence department determines 8 software cri-
teria for themodel itwants to buy. These criteria areC1 : flight
range, C2 : measurement accuracy, C3 : anti-interference
performance, C4 : image processing capability, C5 : gen-
eration of contour lines using DEM/DSM, C6 : generation of
3D modelling/texturing capabilities C7 : measurement tools
for co-ordinate/distance/area/volume and C8 : price. After
receiving the opinion of the Ministry of Defence, 6 alterna-
tives are determined for sale after some restrictions. These
restrictions include criteria features and software versions.
In addition, since technologies will develop over the years,
how much of the limitation of the software will be removed
and whether version updates can be obtained are important
possibilities that may be encountered. Since all these sit-
uations must be considered at the same time and decided
at once, it becomes very critical to be able to express this
problem with numerical values. This is where the impor-
tance of CFZNs comes into play. CFZNs can express these
4 inputs at the same time, while simultaneously consider-
ing constraints and probabilities. The evolution values for
A1 at C1 are 〈(0.5, 0.4), (0.4, 0.6)〉 which represents that
the seller cut down feature of C1 for fifty percent, and the
version for forty percent. In addition, we express the reliabil-
ity of the software and update constraint will be removed
by forty percent and sixty percent, respectively in com-
ing years. Additionally, weights of the criteria are given as
α � (0.120.080.090.130.080.110.100.140.15) by the expert
of the purchasing country.

Step 1. The evolution values given by expert in terms of
CFZNs are represented in Table 1 as the decision matrix
D(zi )m×n .

Step 2. Normalize the decision matrix D(zi )m×n given in
Table 2.

Since the only cost criteria is price of the UAVs, we have
the normalized decision matrix Ni j as:
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Table 1 Assessments of the
expert C1 C2 C3 C4

A1 〈(0.1, 0.2),
(0.5, 0.8)〉

〈(0.7, 0.2),
(0.1, 0.7)〉

〈(0.5, 0.5),
(0.3, 0.3)〉

〈(0.9, 0.5), (0.7, 0.2)〉

A2 〈(0.3, 0.3),
(0.5, 0.6)〉

〈(0.8, 0.6),
(0.1, 0.8)〉

〈(0.3, 0.8),
(0.7, 0.6)〉

〈(0.4, 0.1), (0.9, 0.6)〉

A3 〈(0.5, 0.3),
(0.4, 0.3)〉

〈(0.3, 0.2),
(0.2, 0.5)〉

〈(0.1, 0.9),
(0.2, 0.2)〉

〈(0.7, 0.7), (0.4, 0.1)〉

A4 〈(0.3, 0.3),
(0.1, 0.9)〉

〈(0.5, 0.5),
(0.5, 0.4)〉

〈(0.3, 0.9),
(0.5, 0.7)〉

〈(0.7, 0.8), (0.3, 0.3)〉

A5 〈(0.9, 0.8),
(0.9, 0.5)〉

〈(0.2, 0.5),
(0.7, 0.7)〉

〈(0.8, 0.7),
(0.6, 0.3)〉

〈(0.4, 0.8), (0.4, 0.1)〉

A6 〈(0.7, 0.8),
(0.8, 0.2)〉

〈(0.6, 0.7),
(0.7, 0.6)〉

〈(0.1, 0.2),
(0.3, 0.6)〉

〈(0.2, 0.1), (0.9, 0.2)〉

C5 C6 C7 C8

A1 〈(0.1, 0.2),
(0.6, 0.6)〉

〈(0.9, 0.1),
(0.2, 0.4)〉

〈(0.3, 0.1),
(0.8, 0.4)〉

〈(0.4, 0.6), (0.9, 0.7)〉

A2 〈(0.3, 0.1),
(0.3, 0.9)〉

〈(0.2, 0.5),
(0.9, 0.2)〉

〈(0.5, 0.6),
(0.6, 0.6)〉

〈(0.7, 0.4), (0.2, 0.8)〉

A3 〈(0.1, 0.4),
(0.8, 0.5)〉

〈(0.1, 0.8),
(0.6, 0.5)〉

〈(0.5, 0.5),
(0.6, 0.6)〉

〈(0.8, 0.8), (0.8, 0.5)〉

A4 〈(0.7, 0.2),
(0.8, 0.2)〉

〈(0.9, 0.7),
(0.2, 0.8)〉

〈(0.9, 0.6),
(0.4, 0.4)〉

〈(0.3, 0.3), (0.9, 0.2)〉

A5 〈(0.8, 0.4),
(0.2, 0.1)〉

〈(0.6, 0.4),
(0.4, 0.4)〉

〈(0.5, 0.3),
(0.5, 0.1)〉

〈(0.8, 0.3), (0.3, 0.6)〉

A6 〈(0.9, 0.6),
(0.3, 0.5)〉

〈(0.7, 0.3),
(0.2, 0.5)〉

〈(0.2, 0.3),
(0.9, 0.3)〉

〈(0.1, 0.4), (0.9, 0.7)〉

Step 3. Aggregate the normalized decision matrix Ni j

based on CFZNWA or CFZNWG aggregation operators
given in Eqs. (25) or (26), respectively, using given weights.

Using the CFZNWA given in Eq. (25), the aggregated
values Ri are obtained as

R1 � 〈(0.5919, 0.3061), (0.3937, 0.4597)〉
R2 � 〈(0.3575, 0.4069), (0.6371, 0.6286)〉
R3 � 〈(0.3285, 0.6082), (0.3818, 0.3323)〉

R4 � 〈(0.6449, 0.5536), (0.3025, 0.6134)〉

R5 � 〈(0.5664, 0.5271), (0.5390, 0.3256)〉

R6 � 〈(0.6005, 0.4190), (0.5572, 0.3339)〉

Step 4. Calculate the score values of Ri for i � 1, 2, . . . ,
m using the score function.

Using the score function given in Eq. (27) we have
S(R1) � 0.1916, S(R2) � 0.2419, S(R3) � 0.1672,
S(R4) � 0.2744, S(R5) � 0.2363 and S(R6) � 0.2271.
Therefore, we have the ranking A4 > A2 > A5 > A6 >

A1 > A3 and we conclude that A4 is the best and A3 is the
worst alternative. Visual interpretation can be seen in Fig. 1.

Validity test of the proposedmethod

An important problem with decision-making methods that
rank alternatives in real-life problems in terms of criteria is
that sometimes these methods can provide different answers
(orders) when used with the same numerical data. There-
fore, the issue arises of how to evaluate the performance of
such methods. Since each decision-making method has rel-
ative advantages and disadvantages, it is almost impossible
to determine both which decision-making method is consis-
tent, and which is the best alternative for a given decision
problem. Therefore, the decision-making methods used or
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Table 2 Normalized decision
matrix Ni j

C1 C2 C3 C4

A1 〈(0.1, 0.2),
(0.5, 0.8)〉

〈(0.7, 0.2),
(0.1, 0.7)〉

〈(0.5, 0.5),
(0.3, 0.3)〉

〈(0.9, 0.5), (0.7, 0.2)〉

A2 〈(0.3, 0.3),
(0.5, 0.6)〉

〈(0.8, 0.6),
(0.1, 0.8)〉

〈(0.3, 0.8),
(0.7, 0.6)〉

〈(0.4, 0.1), (0.9, 0.6)〉

A3 〈(0.5, 0.3),
(0.4, 0.3)〉

〈(0.3, 0.2),
(0.2, 0.5)〉

〈(0.1, 0.9),
(0.2, 0.2)〉

〈(0.7, 0.7), (0.4, 0.1)〉

A4 〈(0.3, 0.3),
(0.1, 0.9)〉

〈(0.5, 0.5),
(0.5, 0.4)〉

〈(0.3, 0.9),
(0.5, 0.7)〉

〈(0.7, 0.8), (0.3, 0.3)〉

A5 〈(0.9, 0.8),
(0.9, 0.5)〉

〈(0.2, 0.5),
(0.7, 0.7)〉

〈(0.8, 0.7),
(0.6, 0.3)〉

〈(0.4, 0.8), (0.4, 0.1)〉

A6 〈(0.7, 0.8),
(0.8, 0.2)〉

〈(0.6, 0.7),
(0.7, 0.6)〉

〈(0.1, 0.2),
(0.3, 0.6)〉

〈(0.2, 0.1), (0.9, 0.2)〉

C5 C6 C7 C8

A1 〈(0.1, 0.2),
(0.6, 0.6)〉

〈(0.9, 0.1),
(0.2, 0.4)〉

〈(0.3, 0.1),
(0.8, 0.4)〉

〈(0.6, 0.6), (0.1, 0.7)〉

A2 〈(0.3, 0.1),
(0.3, 0.9)〉

〈(0.2, 0.5),
(0.9, 0.2)〉

〈(0.5, 0.6),
(0.6, 0.6)〉

〈(0.3, 0.4), (0.8, 0.8)〉

A3 〈(0.1, 0.4),
(0.8, 0.5)〉

〈(0.1, 0.8),
(0.6, 0.5)〉

〈(0.5, 0.5),
(0.6, 0.6)〉

〈(0.2, 0.8), (0.2, 0.5)〉

A4 〈(0.7, 0.2),
(0.8, 0.2)〉

〈(0.9, 0.7),
(0.2, 0.8)〉

〈(0.9, 0.6),
(0.4, 0.4)〉

〈(0.7, 0.3), (0.1, 0.2)〉

A5 〈(0.8, 0.4),
(0.2, 0.1)〉

〈(0.6, 0.4),
(0.4, 0.4)〉

〈(0.5, 0.3),
(0.5, 0.1)〉

〈(0.2, 0.3), (0.7, 0.6)〉

A6 〈(0.9, 0.6),
(0.3, 0.5)〉

〈(0.7, 0.3),
(0.2, 0.5)〉

〈(0.2, 0.3),
(0.9, 0.3)〉

〈(0.9, 0.4), (0.1, 0.7)〉

Fig. 1 Ranking of alternatives
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developed need to undergo testing procedures. These proce-
dures were first introduced by Triantaphyllou [39] and are
still used extensively today to measure the consistency and
validity of newly developed methods. These test criteria are:

1. When a suboptimal alternative is replaced with a worse
alternativewithout changing the importance of each deci-
sion criterion, the ranking of the best alternative should
remain the same (This criterion is interpreted as “An
effective decision-making method should avoid the rank
reversal phenomenon effectively when an alternative is
added or deleted” in some studies).

2. Decision making method should satisfy the transitive
property.

3. When a decision-making problem is decomposed into
smaller problems and a decision-making method is
applied to rank the alternatives for these smaller prob-
lems, the combined ranking of the alternatives should be
the same as the original ranking of the problem.

Validity test for criterion 1: If we replace A6 with A1 and
the steps are executed, since aggregation operators are row-
based operations, nothing changes except the ranking of A5

and A1 as A4 > A2 > A5 > A1 > A6 > A3.

Validity test for criterion 2 and 3: Let separate the problem
into three sub-problems taking the alternatives randomly as
{A1, A2, A4, A6}, {A2, A3, A5, A6} and {A1, A2, A3,
A5}. Then, the rankings are obtained as A4 > A2 > A6 >

A1, A2 > A5 > A6 > A3 and A2 > A5 > A1 > A3,
respectively. Ifwe combine the ranking,we haveA4 > A2 >

A5 > A6 > A1 > A3 which is the original one. Addition-
ally, it is easy to see that if A4 > A2 and A2 > A3 from
sub-problems, then we have A4 > A3 which is an example
of transitive property.

Comparison and discussion

The proposed CFZNS is a novel set theory that emerges
complex fuzzy sets and Z-numbers. Besides, it should also
be noted that CFZNS is a generalization of the Z-numbers.
Although the topic of Z-number has been trending in recent
years, there have been few studies in this field concerning
arithmetic operations. These studies have either treated the
reliability component of Z-number as a linguistic variable
or converted the Z-number to crisp numbers using a limited
set of operations. Alternatively, some studies have treated
the reliability operations the same as the constraint oper-
ations. These situations can lead to a loss of knowledge
when applied to real-life problems. This is because not all
arithmetic operations can be accurately represented using
linguistic operations, and operations are often carried out by
converting Z-numbers to crisp numbers. The conversion of

information to crisp number results in a loss of information.
In the light of this information, there are few cases where
we can compare the proposed CFZNS, since the proposed
set and its operations are also new. Therefore, we compare
the results with CFZNWG operator, Z-numbers, Z-numbers
with same arithmetic operations and complex fuzzy sets.

I. We use CFZNWG operator given in (26) to aggregate
decision matrix D(zi )m×n given in Table 1. The aggregated
values Ri are evaluated as

R1 � 〈(0.5919, 0.3061), (0.3937, 0.4597)〉
R2 � 〈(0.3575, 0.4069), (0.6371, 0.6286)〉
R3 � 〈(0.3285, 0.6082), (0.3818, 0.3323)〉
R4 � 〈(0.6449, 0.5536), (0.3025, 0.6134)〉
R5 � 〈(0.5664, 0.5271), (0.5390, 0.3256)〉
R6 � 〈(0.6005, 0.4190), (0.5572, 0.3339)〉

and the score values are obtained as S(R1) � 0.1823,
S(R2) � 0.2601, S(R3) � 0.1932, S(R4) � 0.2798,
S(R5) � 0.2550 and S(R6) � 0.2040 using score func-
tion given in Eq. (27). Therefore, we have the ranking
A4 > A2 > A5 > A6 > A3 > A1 and we conclude that
A4 is the best alternative. This ranking result is consistent
with the result operated by the CFZNWA operator, as can be
seen in Table 3. This shows how compatible and logical the
arithmetic operations given in Eq. (11) are.

II. By taking ωc � 0 and ωr � 0, decision matrix reduces
to Z-numberswhich has the form z � 〈c, r〉, and the decision
matrix becomes.

C1 C2 C3 C4

A1 〈0.1, 0.5〉 〈0.7, 0.1〉 〈0.5, 0.3〉 〈0.9, 0.7〉
A2 〈0.3, 0.5〉 〈0.8, 0.1〉 〈0.3, 0.7〉 〈0.4, 0.9〉
A3 〈0.5, 0.4〉 〈0.3, 0.2〉 〈0.1, 0.2〉 〈0.7, 0.4〉
A4 〈0.3, 0.1〉 〈0.5, 0.5〉 〈0.3, 0.5〉 〈0.7, 0.3〉
A5 〈0.9, 0.9〉 〈0.2, 0.7〉 〈0.8, 0.6〉 〈0.4, 0.4〉
A6 〈0.7, 0.8〉 〈0.6, 0.7〉 〈0.1, 0.3〉 〈0.2, 0.9〉

C5 C6 C7 C8

A1 〈0.1, 0.6〉 〈0.9, 0.2〉 〈0.3, 0.8〉 〈0.4, 0.9〉
A2 〈0.3, 0.3〉 〈0.2, 0.9〉 〈0.5, 0.6〉 〈0.7, 0.2〉
A3 〈0.1, 0.8〉 〈0.1, 0.6〉 〈0.5, 0.6〉 〈0.8, 0.8〉
A4 〈0.7, 0.8〉 〈0.9, 0.2〉 〈0.9, 0.4〉 〈0.3, 0.9〉
A5 〈0.8, 0.2〉 〈0.6, 0.4〉 〈0.5, 0.5〉 〈0.8, 0.3〉
A6 〈0.9, 0.3〉 〈0.7, 0.2〉 〈0.2, 0.9〉 〈0.1, 0.9〉
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Fig. 2 Ranking comparison of alternatives

Fig. 3 Ranking comparison of
alternatives with radar plot

and updating CFZNWA operator given in Eq. (16) for Z-
numbers as

ZNW A (z1, z2, . . . , zn)

�
(
1 − ∏n

i�1 (1 − ci )αi ,
∏n

i�1 (1+ri )αi −∏n
i�1 (1−ri )αi∏n

i�1 (1+ri )αi +
∏n

i�1 (1−ri )αi

)

we have

R1 � 〈0.5919, 0.3937〉R2 � 〈0.3575, 0.6371〉
R3 � 〈0.3285, 0.3818〉R4 � 〈0.6449, 0.3025〉
R5 � 〈0.5664, 0.5390〉R6 � 〈0.6005, 0.5572〉

Table 3 Comparative study

Methods Rankings

CFZNWG Operator A4 > A2 > A5 > A6 > A3 > A1

Z-numbers with ZNWA
operator

A6 > A5 > A1 > A2 > A4 > A3

Z-numbers with same
operations

A2 > A4 > A6 > A1 > A5 > A3

Complex fuzzy set A4 > A5 > A6 > A3 > A1 > A2

Proposed approach A4 > A2 > A5 > A6 > A1 > A3
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Table 4 Sample of ıris data
Sepal Petal

Length Width Length Width

Iris-setosa

S1 5.1 3.5 1.4 0.2

S2 4.9 3.0 1.4 0.2

S3

...

4.7

...

3.2

...

1.3

...

0.2

...

Iris-versicolor

S51 7.0 3.2 4.7 1.4

S52 6.4 3.2 4.5 1.5

S53

...

6.9

...

3.1

...

4.9

...

1.5

...

Iris-virginica

S101 6.3 3.3 6.0 2.5

S102 5.8 2.7 5.1 1.9

S103

...

7.1

...

3.0

...

5.9

...

2.1

...

Using the score function in Eq. (27) we have S(R1) �
0.1165, S(R2) � 0.1139, S(R3) � 0.0627, S(R4) �
0.0975, S(R5) � 0.1526 and S(R6) � 0.1673 and the rank-
ing is A6 > A5 > A1 > A2 > A4 > A3. Looking at
Table 3, this ranking result is quite different from the pro-
posed approach. The best alternative, A4, found with both
CFZNWA and CFZNWG operators, falls to the lower ranks
here, while the middle-ranked alternative A6 is the best alter-
native here. This case shows how effective CFZNs, which are
a generalization of Z-numbers, are in the results.

III. If we use same arithmetic operations calculating Z-
number for restriction and reliability, we have

R1 � 〈0.4252, 0.4828〉R2 � 〈0.6665, 0.6546〉
R3 � 〈0.4043, 0.3475〉R4 � 〈0.3270, 0.6466〉
R5 � 〈0.5654, 0.3487〉R6 � 〈0.6011, 0.3487〉

Using the score function we have S(R1) � 0.1027,
S(R2) � 0.2181, S(R3) � 0.0702, S(R4) � 0.1057,
S(R5) � 0.0986 and S(R6) � 0.1048 and the ranking is
A2 > A4 > A6 > A1 > A5 > A3. Again, the rank-
ing result is different from the proposed approach except the
worst alternative from the Table 3. However, it is possible
to see the changes of successive alternatives in these rank-
ings such as A2 and A4. The best alternative has changed,
although not as big changes as in other methods. This situa-
tion also a demonstration of how proposed approach effects
the results.

IV. If we take only the first part of the proposed approach
to see the impact of the reliability, the operations reduce to
complex fuzzy sets which can be written as Ac � (c, ωc)

and we have.

C1 C2 C3 C4

A1 〈(0.1, 0.2)〉 〈(0.7, 0.2)〉 〈(0.5, 0.5)〉 〈(0.9, 0.5)〉
A2 〈(0.3, 0.3)〉 〈(0.8, 0.6)〉 〈(0.3, 0.8)〉 〈(0.4, 0.1)〉
A3 〈(0.5, 0.3)〉 〈(0.3, 0.2)〉 〈(0.1, 0.9)〉 〈(0.7, 0.7)〉
A4 〈(0.3, 0.3)〉 〈(0.5, 0.5)〉 〈(0.3, 0.9)〉 〈(0.7, 0.8)〉
A5 〈(0.9, 0.8)〉 〈(0.2, 0.5)〉 〈(0.8, 0.7)〉 〈(0.4, 0.8)〉
A6 〈(0.7, 0.8)〉 〈(0.6, 0.7)〉 〈(0.1, 0.2)〉 〈(0.2, 0.1)〉

C5 C6 C7 C8

A1 〈(0.1, 0.2)〉 〈(0.9, 0.1)〉 〈(0.3, 0.1)〉 〈(0.4, 0.6)〉
A2 〈(0.3, 0.1)〉 〈(0.2, 0.5)〉 〈(0.5, 0.6)〉 〈(0.7, 0.4)〉
A3 〈(0.1, 0.4)〉 〈(0.1, 0.8)〉 〈(0.5, 0.5)〉 〈(0.8, 0.8)〉
A4 〈(0.7, 0.2)〉 〈(0.9, 0.7)〉 〈(0.9, 0.6)〉 〈(0.3, 0.3)〉
A5 〈(0.8, 0.4)〉 〈(0.6, 0.4)〉 〈(0.5, 0.3)〉 〈(0.8, 0.3)〉
A6 〈(0.9, 0.6)〉 〈(0.7, 0.3)〉 〈(0.2, 0.3)〉 〈(0.1, 0.4)〉
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Updating CFZNWA operator given in Eq. (16) for com-
plex fuzzy sets as

CFW A (z1, z2, . . . , zn)

�
(
1 − ∏n

i�1 (1 − ci )αi , 1 − ∏n
i�1

(
1 − ωci

)αi
)

And using score function in Eq. (27), we have S(R1) �
0.4490, S(R2) � 0.4684, S(R3) � 0.9367, S(R4) �
0.5992, S(R5) � 0.5467 and S(R6) � 0.5097 and the rank-
ing is A4 > A5 > A6 > A3 > A1 > A2. From Table 3,
although the best alternative stays same, the second alterna-
tive falls into the last place. This change shows how important
reliability is when making decisions.

Figures 2 and 3 depicts the ranking change of alternatives
as the method changes. The ranking is almost same for the
aggregation operators of proposed method. It indicates the
reliability of the proposed method. However, when the data
environment change, (reduced sets in these cases) rankings
also change. When problem data is updated for Z-numbers
that is explained in item II, the alternative A4 jumps to first
place while A1 drops to fifth place. This is an important
change and is due to the simplification of the proposed prob-
lem values, which means loss of information.

Additionally, if the restriction and reliability operations of
Z-numbers are taken the same as in the sum example below:

z1 ⊕ z2 �
〈(

1 −
2∏

i�1

(1 − ci ) , 1 −
2∏

i�1

(
1 − ωci

)
)

,

(

1 −
2∏

i�1

(1 − ri ) , 1 −
2∏

i�1

(
1 − ωri

)
)〉

rankings also change when compared to proposed operators.
But the point to be considered here is that it does not show
similaritywith the results foundwith theZ-number.Rankings
completely alters except the worst alternative. There is no
doubt that taking sameoperations for both parts ofZ-numbers
affect the results intensively.

Moreover, if the second part of CFZNSs taken as empty
set, the proposed approach reduces directly to CFSs since the
restriction part consists of complex data and fuzzy numbers.
When rankings are compared between the proposed method
and the CFNs, the effect of reliability can be seen clearly.
Best alternatives stay same but the alternative A2 drops to
last place. The reason of A2 is the second alternative in our
proposed approach is the reliability values given in Table 3.
These values are relatively higher than other reliability values
which can be interpreted as the impact of reliability.

Numerical application with a real dataset

In the previous section, we demonstrated the power of
the proposed method when applied to data expressed with

CFZNs. First, we utilized hypothetical data and applied the
CFZNWA and CFZNWG operators to aggregate CFZNs,
obtaining the results.Next,wevalidated the proposedmethod
using three test criteria, thereby measuring its consistency
and validity. Finally, we compared the results with those
obtained from other sets and observed changes in the
rankings. Now, to see the real effect of the proposed method,
we use a real example from UC Irvine Machine Learning
Repository [3] that can be expressed as CFZNs.

The Iris flower dataset is a foundational benchmark in the
field of classification, holding a prominent place in the lit-
erature on machine learning and statistics. This widely used
dataset consists of 150 samples, equally distributed across
three distinct Iris species: Iris-setosa, Iris-versicolor and Iris-
virginica. Each sample is characterized by four features rep-
resenting petal and sepal dimensions in centimetres (cm):

c1 : sepal length, c2 : sepal width, c3 : petal length and
c4 : petal width.

The first three instances of each Iris species expressed as
S1, S2 and S3 are provided in Table 4.

Notably, two of the three classes are linearly separable,
while the remaining class exhibits partial overlap with the
others in feature space. This characteristic makes the Iris
dataset a valuable tool for evaluating and comparing the per-
formance of various classification algorithms. In contrast to
previous approaches, we express the data as CFZNs to facil-
itate a decision-making problem. Sepal length and width are
considered as the restriction part of the first criteria, while
petal length and width are taken as the reliability part of the
second criteria. Since these datasets are real samples, the reli-
ability of the inputs is maximum and therefore, the reliability
component for both criteria are set to 1. To represent the data
asCFZNs,we transform the existing values into four-element
vectors for each criterion, as given in Table 5.

To apply the values given in Table 5 to CFZNs, we first
need to normalize these values using the one of the normal-
ization steps given below, which is the most commonly used
in the literature:

Ni j � ai j√∑m
i�1 ai j

2
(i � 1, 2, . . . , m; j � 1, 2, . . . , n)

(28)

where m is sample numbers, n is criteria and ai j is each
element of each criterion. The we obtain the CFZN decision
matrix as provided in Table 6.

Applying the CFZNWA operator given in Eq. (25), the
aggregated values Ri are obtained as

R1 � 〈(0.0493, 0.0529), (0.0816, 0.0816)〉
R2 � 〈(0.0479, 0.0461), (0.0816, 0.0816)〉
R3 � 〈(0.0455, 0.0488), (0.0816, 0.0816)〉
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Table 5 Iris data expressed as four elements

C1 C2

Iris-setosa

S1 〈(5.1, 3.5), (1, 1)〉 〈(1.4, 0.2), (1, 1)〉
S2 〈(4.9, 3.0), (1, 1)〉 〈(1.4, 0.2), (1, 1)〉
S3

...

〈(4.7, 3.2), (1, 1)〉
...

〈(1.3, 0.2), (1, 1)〉
...

Iris-versicolor

S51 〈(7.0, 3.2), (1, 1)〉 〈(4.7, 1.4), (1, 1)〉
S52 〈(6.4, 3.2), (1, 1)〉 〈(4.5, 1.5), (1, 1)〉
S53

...

〈(6.9, 3.1), (1, 1)〉
...

〈(4.9, 1.5), (1, 1)〉
...

Iris-virginica

S101 〈(6.3, 3.3), (1, 1)〉 〈(6.0, 2.5), (1, 1)〉
S102 〈(5.8, 2.7), (1, 1)〉 〈(5.1, 1.9), (1, 1)〉
S103

...

〈(7.1, 3.0), (1, 1)〉
...

〈(5.9, 2.1), (1, 1)〉
...

...

R51 � 〈(0.0947, 0.0826), (0.0816, 0.0816)〉
R52 � 〈(0.0885, 0.0855), (0.0816, 0.0816)〉
R53 � 〈(0.0959, 0.0842), (0.0816, 0.0816)〉

...

R101 � 〈(0.1027, 0.1160), (0.0816, 0.0816)〉
R102 � 〈(0.0904, 0.0906), (0.0816, 0.0816)〉
R103 � 〈(0.1072, 0.1003), (0.0816, 0.0816)〉

...

Using the score function given in Eq. (27) we
haveS(R1) � 0.0042,S(R2) � 0.0038,S(R3) � 0.0039,
. . . , S(R51) � 0.0072, S(R52) � 0.0071, S(R53) �
0.0074, . . . , S(R101) � 0.0089, S(R102) � 0.0074,
S(R103) � 0.0085 and so on untilS(R150) � 0.0075.

Sorting the scores in ascending order demonstrates a clear
separation between Iris species. The first 49 sample out
of 50 belong to Iris-setosa class. Similarly, when we look
rankings between 50 and 100, 45 out of 50 sample belong
to Iris-versicolor and 46 out of 50 sample belong to Iris-
virginica ranking between 100 and 150. Here, one sample
that should belong to the Iris-setosa class is misclassified
as Iris-versicolor. Similarly, of the Iris-versicolor class sam-
ples, one is misclassified as Iris-setosa and the remaining
four is assigned to the Iris-virginica. Finally, all four samples
that should belong to the Iris-virginica class is misclassified
as Iris-versicolor. These observations demonstrate a 93.33%
match,which is a promising result since the proposedmethod
is not a classification or clustering method.

Table 6 CFZN decision matrix
C1 C2

Iris-setosa

S1 〈(0.0706, 0.0927), (0.0816, 0.0816)〉 〈(0.0275, 0.0115), (0.0816, 0.0816)〉
S2 〈(0.0678, 0.0794), (0.0816, 0.0816)〉 〈(0.0275, 0.0115), (0.0816, 0.0816)〉
S3

...

〈(0.0650, 0.0847), (0.0816, 0.0816)〉
...

〈(0.0256, 0.0115), (0.0816, 0.0816)〉
...

Iris-versicolor

S51 〈(0.0969, 0.0847), (0.0816, 0.0816)〉 〈(0.0925, 0.0805), (0.0816, 0.0816)〉
S52 〈(0.0885, 0.0847), (0.0816, 0.0816)〉 〈(0.0885, 0.0863), (0.0816, 0.0816)〉
S53

...

〈(0.0955, 0.0821), (0.0816, 0.0816)〉
...

〈(0.0964, 0.0863), (0.0816, 0.0816)〉
...

Iris-virginica

S101 〈(0.0872, 0.0874), (0.0816, 0.0816)〉 〈(0.1181, 0.1438), (0.0816, 0.0816)〉
S102 〈(0.0802, 0.0715), (0.0816, 0.0816)〉 〈(0.1003, 0.1093), (0.0816, 0.0816)〉
S103

...

〈(0.0982, 0.0794), (0.0816, 0.0816)〉
v

〈(0.1161, 0.1208), (0.0816, 0.0816)〉
...
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Table 7 Comparison of classification rate

Methods Match rate

CFZNWG operator 93.33%

Z-numbers with ZNWA operator 92%

Z-numbers with same operations 89.33%

Complex fuzzy set 92%

Proposed approach 93.33%

Comparison and discussion

We have compared the proposed method in Sub-Sect. "Com-
parison and discussion" and have stated that there are few
cases where we can compare the proposed CFZNS. This is
because the proposed set and its operations are new, and we
can only compare proposed set with the special cases of this
set. After that, we compared the results with CFZNWGoper-
ator, Z-numbers, Z-numbers with same arithmetic operations
and complex fuzzy sets and observed a change of ranking as
given in Table 3. Using same idea, we can compare the results
obtained by real data with these operations. In other words,
the CFZN decision matrix given in Table 6 can be rewritten
according to item I, II, III and VI in 4.3. Then, operating
same calculations we obtain the results given in Table 7.

The results applied by CFZNWG operator give the same
matching rate as the proposedmethodwhich shows the stabil-
ity and the reliability of the proposed method. Additionally,
the fact that the proposed set outperforms the other sets
demonstrates its superiority. Furthermore, the similarity of
the results obtained with other sets to those of the proposed
set demonstrates the suitability of both the proposed set and
its special cases for real-world data applications.

When we compare these results to the classification meth-
ods we notice a significant outcome. Li [22] solved same
Iris flower classification [3]with particle swarm optimization
based on neighbourhood historical memory (PSONHM) and
compared results with other classification algorithms. Com-
parison of all classification rates with our proposed set given
in Table 8.

The classification algorithms given in Table 8 are the
proper tools for classify the data. However, while existing
algorithms, excluding PSONHM and our proposed method,
presents limitations in accurately classifying the real-world
Iris data, both PSONHM and our method achieve almost
same performance. This is noteworthy considering our
method is not specifically designed for classification tasks.
Additionally, it’s important to acknowledge that all these
algorithms require computational resources to converge to
their final results.

Table 8 Comparison of rates with classification algorithms

Algorithm Classification rate (%)

[30] PSO 84.80

[2] PSOcf 86.20

[32] TFBO 90.80

[41] Jaya 80.93

[33] GSA 0.00

[38] BBO 83.00

[42] CoDE 67.06

[37] FPSO 84.73

[22] PSONHM 93.40

Proposed method 93.33

Conclusion

In this paper, the concept of CFZNS is firstly introduced by
extending the Z-number environment to complex environ-
ment to solve comprehensive uncertain information. First,
fundamental operational laws are given, and their proper-
ties are investigated. Then, score and accuracy functions
are defined to measure the four-dimensional data. Further,
CFZNWAandCFZNWGaveraging operators are introduced
based on given fundamental arithmetic operations. Their
desirable properties such as idempotency, monotonicity and
boundedness are given and proved. Moreover, aggregation
operators and score function are combined to develop an
MCDM method, and an attractive numerical example is
selected to show its advantages. Additionally, validation of
the proposed operations is given, and a detailed compara-
tive study is performed to demonstrate the effectiveness of
the method. Moreover, a real-world data application from
the UCI database is carried out and the results are compared
with both special cases of the proposed set and the classifi-
cation algorithms. Considering the studies in the literature,
the proposed CFZNS has the following contributions:

(1) CFZNS can transmit the two-dimensional fuzzy infor-
mation contained in the Z-number to four-dimensional
information. The proposed CFZNS is both a generaliza-
tion of the Z-numbers and the CFSs.

(2) This work presents the fundamental arithmetic oper-
ations of CFZNS, which can be taken as arithmetic
operations for Z-numbers when ωc and ωr are taken as
0. besides, the given operations are also consistent with
the Z-numbers. However, the numerical results show
that the superiority of the CFZNS when compared to
Z-numbers.

(3) Item IV in the comparison section proves the importance
and effectiveness of the reliability in decision making
problems.
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(4) Considering that a decision-making problem can be
expressed with all fuzzy sets in the literature, the pro-
posed method brings a new perspective to the way
decision making problems are expressed in the litera-
ture.

(5) Sect. "Numerical Application with a Real Dataset" con-
firms that real-word situations can be expressed as
CFZNs and the results are promising.

Although the CFZNS is a novel approach to handle
uncertain information, it has surely some limitations. Since
z-numbers can be considered a new concept compared to
all fuzzy sets, there is still more work to be done in this
area. For example, the "processing with words" that Zadeh
mentioned for the reliability part is not fully understood.
Therefore, the operations proposed for reliability part can
have some shortcomings. This lack of information affects the
more generalized sets and one of them is our proposed work.
Additionally, to use real data on this method is not possible
yet since the lack of information about fuzzification on Z-
numbers and complex sets. However, these limitations open a
new field of research about application of real data. Although
the proposed set is a generalization of complex fuzzy sets
and Z-numbers, it is also a novel set approach. For this rea-
son, it opens many new ranges of study, from aggregation
operators to distance measures, from decision-making meth-
ods to entropy. Additionally, since decision-making in this
proposed set give encouraging results, classification prob-
lems and clustering applications may be intriguing for future
studies.
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