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Abstract: The main objective of this study is to analyze the drying kinetics of Citrus medica by
using the freeze-drying method at various thicknesses (3, 5, and 7 mm) and cabin pressures (0.008,
0.010, and 0.012 mbar). Additionally, the study aims to evaluate the efficacy of an artificial neural
network (ANN) in estimating crucial parameters like dimensionless mass loss ratio (MR), moisture
content, and drying rate. Feedforward multilayer perceptron (MLP) neural network architecture was
employed to model the freeze-drying process of Citrus medica. The ANN architecture was trained
using a dataset covering various drying conditions and product characteristics. The training process,
including hyperparameter optimization, is detailed and the performance of the ANN is evaluated
using robust metrics such as RMSE and R2. As a result of comparing the experimental MR with the
predicted MR of the ANN modeling created by considering various product thicknesses and cabin
pressures, the R2 was found to be 0.998 and the RMSE was 0.010574. Additionally, color change, water
activity, and effective moisture diffusivity were examined in this study. As a result of the experiments,
the color change in freeze-dried Citrus medica fruits was between 6.9 ± 0.2 and 21.0 ± 0.6, water
activity was between 0.4086 ± 0.0104 and 0.5925 ± 0.0064, effective moisture diffusivity was between
4.19 × 10−11 and 21.4 × 10−11, respectively. In freeze-drying experiments conducted at various
cabin pressures, it was observed that increasing the slice thickness of Citrus medica fruit resulted in
longer drying times, higher water activity, greater color changes, and increased effective moisture
diffusivity. By applying the experimental data to mathematical models and an ANN, the optimal
process conditions were determined. The results of this study indicate that ANNs can potentially be
applied to characterize the freeze-drying process of Citrus medica.

Keywords: artificial neural network; freeze-drying; mathematical modeling; drying kinetics; Citrus medica

1. Introduction

Citrus medica fruit is a tropical plant species that is very resistant to cold weather, and
has a pleasant smell and larger fruits than other citrus species. Citron fruits are quite large,
yellow, and have a thick, bumpy peel with many seeds [1]. It is known that Citrus medica
fruit has numerous benefits such as anticold, capillary protector, antihypertensive, diuretic,
antibacterial, analgesic, strong antioxidant, antidiabetic, and antihyperglycemic, which
have been proven by pharmacological studies [2,3]. Citrus medica fruit, a plant rich in
vitamin C, is one of the three true citrus varieties, and fruits such as orange, lemon, and
sour orange are obtained through hybridization of these varieties [4]. Many different
products such as marmalade, jam, candies, tea, and carbonated drinks can be obtained from
Citrus medica fruit. The moisture content of Citrus medica fruit is approximately 78% [2].

Drying is a fundamental operation in food processing, aimed at reducing moisture
content to improve shelf life, prevent spoilage, and maintain product quality [5]. Drying
can be accomplished through various methods such as solar-assisted drying, hot-air drying,
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fluidized-bed drying, shade drying, and freeze-drying [6]. Compared to traditional drying
methods, freeze-drying minimizes losses in properties such as color, flavor, and aroma, and
provides higher rehydration rates and longer storage times [7]. Freeze-drying is a process
that removes ice crystals from a frozen product under low pressure through sublimation [8].
Upon reviewing the literature, it is found that many products, including strawberry [9],
persimmon [10], tomatoes [11], chokeberry [12], okra [13], and red pepper [14], have
been dried through the freeze-drying method and thin-layer drying kinetics have also
been evaluated.

Accurate prediction of drying parameters has a crucial role in optimizing process
conditions, minimizing energy consumption, and ensuring consistent product quality.
Artificial neural networks (ANNs) have become invaluable tools for modeling complex
relationships across various domains, including food processing. A model that can accu-
rately predict the drying operation depending on input variables such as product thickness,
cabin pressure, and drying time by harnessing the predictive power of ANNs is critical
in terms of time-saving and energy consumption. Various products and drying methods,
such as apple [15], potato [16], mushroom [17], thyme leaves [18], Mentha spicata l. [19],
and white mulberry [20] have been subjected to ANN analysis according to studies in the
literature. Selvi et al. (2022) [21] conducted infrared drying of linden leaves and applied
artificial neural networks (ANN) to the data obtained during the experiment to determine
the drying kinetics. They observed that the mass change in the linden leaf during the
drying process, when applied to commonly used thin-layer drying models in the literature,
such as the Page, Midilli et al., Henderson and Pabis, logarithmic, and Newton models,
resulted in R2 values > 0.9900 and RMSE values < 0.0025. The ANN model, on the other
hand, showed R2 and RMSE values of 0.9986 and 0.0210, respectively. Additionally, they
observed a high degree of agreement between the predicted values generated by the ANN
model and the experimental moisture content data. In their study, Zalpouri et al. (2023) [22]
conducted drying experiments on onion puree of varying thicknesses using refractance-
window drying and convective drying methods. They applied the experimental data to
eight different thin-layer drying models and used a multilayer feedforward ANN to predict
the dimensionless mass loss ratio (MR) of the onion puree. Their results indicated that both
the Lewis model and the Wangh and Singh model were the most accurate in describing
the drying process, and that the ANN was competitive with these models. Khaled et al.
(2020) [23] conducted drying experiments on persimmon fruit slices of varying thicknesses
using vacuum drying and hot-air drying methods. To describe the drying kinetics, they
employed multilayer feedforward artificial neural networks (ANNs), support vector ma-
chines (SVM), and k-nearest neighbors (kNN) methods. The R2 values obtained using the
ANN, SVM, and kNN methods were 0.9994, 1.0000, and 0.9327, respectively. The study
concluded that computational intelligence methods can be reliably used to describe the
drying kinetics of persimmon fruits.

As in all sectors, time, energy consumption, and cost-effectiveness are of utmost
importance in the food drying and processing industry. Additionally, it is essential to
preserve specific characteristics of the food such as color, taste, and shape to appeal to
consumers. In this study, freeze-drying, which minimizes quality losses in the product
when considering drying methods, was chosen for the drying of Citrus medica fruit. The
data obtained during the freeze-drying process were applied to various mathematical
models found in the literature and to the ANN. Furthermore, comparisons were made
between the ANN, which has superior learning capacity and better flexibility, with an
online, nonintervention structure method along with traditional mathematical modeling
methods. While mathematical modeling only predicts MR changes, an ANN predicts
changes in MR, MC, and DR. By employing an ANN to elucidate the drying process
of Citrus medica fruit and optimize the corresponding process conditions, it is possible
to achieve significant reductions in time, energy consumption, and costs. Despite all
the drying studies carried out on the products, no study has been found on drying the
Citrus medica fruit by the freeze-drying method and investigating the thin-layer drying
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kinetics together with applying an ANN during the drying process. Drying kinetics of
Citrus medica dried with the freeze-drying method were examined experimentally and the
obtained data were applied to six thin-layer mathematical models (Aghbaslo, Alibas, Balbay
and Sahin, improved Midilli–Kucuk, Newton, and Page) preferred in the literature. Thin-
layer mathematical models and an ANN structure are used to define the drying kinetics of
the Citrus medica fruit. The objective of this research is to investigate how freeze-drying
with varying cabin pressures (0.008, 0.010, and 0.012 mbar) affects the drying behavior of
Citrus medica fruit slices with various thicknesses (3, 5, and 7 mm). The study also aims to
develop an ANN-based model to predict the drying kinetics of the dried Citrus medica fruit.
Thus, it is aimed to use the ANN to establish a meaningful connection among features such
as cabin pressure, product thickness, drying time, and drying kinetics.

2. Materials and Methods
2.1. Material

The samples of Citrus medica used for the drying experiment were harvested in Rize
Province, Türkiye (41.030290◦ N, 40.489494◦ E), in December 2023. The bumpy peel was
removed from the samples prior to freeze-drying, and Citrus medica fruits were sliced into
thicknesses of 3, 5, and 7 mm before being frozen at −40 ◦C for 24 h. To determine the initial
moisture content of Citrus medica, a 50 g sample was placed in an oven (Jeio Tech-ON-21E,
Jeio Tech Co., Daejeon, Republic of Korea) operating at a constant temperature (105 ◦C) for
24 h. The moisture content was determined to be 81.0 ± 0.1%.

2.2. Methods
2.2.1. Drying Procedure

The frozen Citrus medica fruits were placed in a Labconco FreeZone 2.5 Manual freeze
dryer (Labconco, Kansas City, MO, USA) and subjected to various pressure values (0.008,
0.010, and 0.012 mbar) for drying. The mass of the product was measured and recorded
during the experiments using a precise balance (DIKOMSAN EGY-50, with a sensitivity of
10−3 g, Dikomsan, Istanbul, Türkiye) located inside the drying chamber.

2.2.2. Determination of Moisture Content, Dimensionless Mass Loss Ratio, and Drying Rate

Drying is defined as the process of prolonging the storage duration of a product by
reducing its moisture content (MC) to a level where microbial growth will not occur. In this
regard, it is very important to determine the initial moisture content of the product to be
dried and the moisture content of the final product. The moisture content of Citrus medica
fruit was calculated using Equation (1). The most important parameter in the mathematical
modeling phase used to describe the drying process is the dimensionless mass loss ratio
(MR) determined using Equation (2). In addition, the drying rate (DR) of the product,
which varies depending on the moisture content of the product, its thickness, and process
conditions (such as temperature and pressure), was determined using Equation (3).

MC =
M0 − Me

M0
× 100 (1)

MR =
Mt − Me

M0 − Me
(2)

DR =
Mt+dt − Mt

dt
(3)

In this equation, M0, Me, Mt+dt, and Mt are the moisture content at the initial condition,
the moisture content at the equilibrium state, the moisture content at times t + dt, and the
moisture content t, respectively.
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2.2.3. Mathematical Modeling of the Drying Data and Statistical Analysis

During the freeze-drying experiments, the mass of the product was measured at
specific time intervals using a precise balance located inside the drying chamber, and the
MR was calculated. These data were then used to apply thin-film models, as given in
Equations (4)–(9). Six thin-film drying models commonly used in the literature are given in
Table 1.

Table 1. Thin-layer drying models [21,24–26].

Model Name Model No. Model Equation Equations

Aghbaslo 1 MR = exp
(
− k1t

1+k2t

)
(4)

Alibas 2 MR = aexp((−ktn ) + (bt)) + g (5)
Balbay and Sahin 3 MR = (1 − a)exp(−ktn) + b (6)

Improved Midilli Kucuk 4 MR = aexp(−k1tn)− exp(−k2tn)− btn (7)
Newton 5 MR = exp(−kt) (8)

Page 6 MR = exp(−ktn) (9)

MR: dimensionless mass loss ratio; k, k1, k2, a, b, g: drying constants; n: number of drying constants; t: time.

A nonlinear regression analysis was conducted to examine all experimental data and
determine the most suitable model for describing the drying processes. Table 2 presents
the evaluation criteria (Equations (10)–(12)) used to assess how well the mathematical
models align with the real experimental system. The best model to describe the drying of
Citrus medica fruit was identified based on the evaluation criteria. The R2 should have the
highest value, while the χ2 and RMSE should have the lowest value when evaluating the
data obtained from the drying experiments [27,28].

Table 2. Criterion equations used in evaluating the mathematical modeling of the drying curve [29].

Evaluation Parameters Evaluation Criterion Equations Equations

Reduced chi-square X2 =
∑N

i=1(MRexp,i−MRpre,i)
2

N−n
(10)

Root mean square error RMSE =

√
∑N

i=1(MRpre,i−MRexp,i)
2

N
(11)

Coefficient of determination R2 = 1 − ∑N
i=1(MRexp,i−MRpre,i)

2

∑n
1(MRexp,i−MRavg)

2
(12)

N: number of observations; exp: experimental; pre: predicted; avg: average.

2.2.4. Artificial Neural Network Design

In this study, feedforward multilayer perceptron (MLP) neural network architecture
was employed to model the freeze-drying process of Citrus medica. MLPs are widely used
for regression tasks and have been successful in modeling drying processes, making them
a suitable choice for this study [30–34]. The MLP was implemented using the feedforward-
net function in MATLAB R2023a. The architecture comprises an input layer, one hidden
layer, and an output layer. The input layer incorporates features relevant to the drying
process, including product thickness (I1), cabin pressure (I2), and drying time (I3). These
features were selected based on their significant impact on drying kinetics observed in the
experimental study. In this study, a single hidden layer with 5 neurons was used. While
determining the optimal number of hidden neurons often involves empirical testing, a
single hidden layer with a moderate number of neurons has been shown to be sufficient
for approximating complex functions in many applications, including drying [33]. For this
study, initial experiments indicated that a single hidden layer achieved satisfactory perfor-
mance. The hidden layer utilized the default activation function in feedforwardnet, which
is the tan–sigmoid activation function. The tan–sigmoid function introduces nonlinearity
into the model, enabling it to capture the complex relationships between the input features
and the output drying parameters. A linear activation function was used for the output
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layer. This is a standard practice for regression problems because linear activation allows
the network to output a continuous range of values, which is appropriate for predicting
drying parameters like moisture content and drying rate. The output layer consists of
predicted drying parameters, namely dimensionless mass loss ratio (MR), moisture content
(MC), and drying rate (DR). The overall structure of the ANN, including the connections
between input, hidden, and output layers, is depicted in Figure 1.
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The mathematical expressions governing the network’s behavior are given in
Equations (13)–(15).

Hidden layer activation (a1):

a1 = f (W1 · I + b1) (13)

Output layer activation (a2):
a2 = f (W2 · a1 + b2) (14)

Loss function (L):

L =
1
N ∑

(
∥Ytrue − Ypre

∥∥2
)

(15)

where W1 and W2 are the weight matrices of the hidden and output layers, respectively;
b1 and b2 are the bias vectors of the hidden and output layers, respectively; f(.) denotes
the activation function (e.g., sigmoid, ReLU); Ytrue is the true output vector; Ypre is the
predicted output vector; and N is the number of samples in the dataset.

The network’s weights and biases were optimized using the Levenberg–Marquardt
backpropagation algorithm, the default training algorithm for feedforwardnet in MATLAB
r2023a. This algorithm is known for its efficiency in finding local minima of the error
function, particularly for networks with a moderate number of weights and biases [34],
as is the case in this study. The training was performed for a maximum of 1000 epochs.
The max_fail parameter, set to 20, implements an early stopping criterion based on the
validation set performance to prevent overfitting. If the validation error does not decrease
for 20 consecutive epochs, the training process is stopped to avoid overfitting the training
data and to improve the model’s ability to generalize to unseen data. Other parameters are
summarized in Table 3.

Artificial neural networks (ANNs) have been chosen for predicting drying kinetics
due to their proven ability to model complex nonlinear relationships. This has been
demonstrated in various studies. For instance, Cetin (2022) [35] used ANNs to predict the
MR and drying rate of orange slices, while Dalvi-Isfahan (2020) [36] compared different
modeling approaches for predicting the moisture content of apple slices. Additionally,
Chasiotis et al. (2020) [37] utilized ANNs to model the moisture content evolution during
the convective drying of cylindrical quince slices.
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Table 3. Algorithm parameters for the training neural network.

Parameter Value

Number of epochs 1000
Maximum validation failures 20

Minimum gradient 1 × 10−5

µ parameter 0.01
µ decrease parameter 0.1
µ increase parameter 10

The flexibility and adaptability of ANNs allow them to be customized to match the
specific characteristics of a dataset, such as the number of input features and desired outputs.
This capability makes them particularly suitable for diverse and complex applications,
where models like support vector machines (SVMs) or random forests might be less effective.
This is supported by the literature, which shows that ANNs can be finely tuned to the
nuances of specific datasets and tasks [38,39].

In the realm of drying processes, ANNs have shown exceptional success. For example,
an ANN model effectively predicted the drying kinetics and chemical attributes of linden
leaves during infrared drying, achieving high accuracy and demonstrating robustness in
handling such tasks. Another study on sweet potato drying processes highlighted the
optimization potential of ANNs to enhance various drying methods, emphasizing their
adaptability and precision in modeling intricate data relationships [21,40].

The initial exploration using the chosen ANN architecture in this study yielded promis-
ing results in predicting drying parameters, providing strong justification for further refine-
ment and evaluation of this model. Although other machine learning models might offer
additional insights, the proven track record and customization capabilities of ANNs make
them an excellent choice for this specific application [21,40].

Furthermore, the Levenberg–Marquardt backpropagation algorithm, commonly used
for training feedforward networks in MATLAB r2023a, enhances the efficiency of ANNs by
optimizing weights and biases. This algorithm is particularly suitable for networks with a
moderate number of parameters, providing rapid convergence and effective minimization
of the error function [41,42], which are crucial for achieving accurate and reliable predictions
in drying process models.

In summary, the focus on ANNs in this study is justified by their established effec-
tiveness, flexibility, and the promising initial results obtained with the chosen architecture.
This targeted approach allows for more in-depth refinement and evaluation, ultimately
aiming to optimize and accurately predict drying parameters [21,30–33,38,40].

2.2.5. Determination of Water Activity

The change in water activity was measured before and after the drying experiments us-
ing a water activity meter (Aqualab-Dew Point-Water Activity Meter 4TE). The temperature-
controlled sample chamber was set to 25 ◦C.

2.2.6. Determination of Color Change

The color of the Citrus medica fruits was measured at the beginning and end of freeze-
drying experiments using a colorimeter (Color Reader CR-10). To determine the color
change in the product, the L*, a*, and b* values were measured at three different points
on the Citrus medica fruit. The colorimeter’s L*, a*, and b* values indicate the lightness,
redness/greenness, and yellowness/blueness, respectively. The color change in the product
as a result of the freeze-drying experiments is calculated using Equation (16).

∆E =
2

√(
∆L*

)2
+
(

∆a*
)2

+
(

∆b*
)2

(16)



Processes 2024, 12, 1362 7 of 18

where ∆L* is the lightness difference, ∆a* the redness/greenness difference, and ∆b* the
yellowness/blueness difference.

2.2.7. Effective Moisture Diffusivity (Deff)

The effective moisture diffusivity describes the rate of moisture movement, regardless
of the mechanism involved [43]. The drying of food products mostly occurs in the falling
rate period [44]. The calculation of MR can be adopted from a moisture diffusion model
based on Fick’s Second Law, as shown in Equation (17).

MR =
8

π2 ∑∞
n=1

1

(2n + 1)2 exp

(
(2n + 1)2π2De f f t

4L2

)
(17)

where Deff is the effective moisture diffusivity, and L is the half thickness of the product [45].
Transforming Equation (14) into a linear function of time yields Equation (18).

ln(MR) = ln
(

8
π2

)
+

(
−

π2De f f t

4L2

)
(18)

The slope (k) of t versus ln(MR) can be expressed as a function of Deff, as in Equation (19).

k = −
π2De f f

4L2 (19)

2.2.8. Uncertainty Analysis

During experimental studies, an uncertainty analysis is performed using Equation (20)
to determine the accuracy of the experiment, taking into account many factors such as
the sensitivity of the measurement instruments and the environmental conditions under
which the experiment is performed [46]. The sensitivity values of the devices used in the
experiments are given in Table 4.

WR =

[(
∂R
∂x1

w1

)2
+

(
∂R
∂x2

w2

)2
+

(
∂R
∂x3

w3

)2
+ . . . +

(
∂R
∂xn

wn

)n
] 1

2

(20)

where WR is uncertainty in the results; R is the result as a function of independent variables
of x1, x2, x3, and xn; and w1, w2, w3, and wn are uncertainties of independent variables.

Table 4. Sensitivity of equipment used in the experiments.

Equipment Uncertainty Sensitivity

Freezer temperature w1 ±1 ◦C
Precision balance w2 ±10−3 g

Freeze-dryer temperature w3 ±0.1 ◦C
Freeze-dryer pressure w4 ±0.001 mbar

Drying oven temperature w5 ±1 ◦C
Digital thermometer w6 ±0.1 ◦C

Color meter w7 ±0.1
Water activity meter w8 ±0.01

Caliper precision w9 ±0.01 mm

As a result of the calculations performed and depending on the sensitivity of the
measuring devices used in the experimental studies, WRFD = 1.43% was obtained.
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3. Results and Discussions
3.1. Effect of the Freeze-Drying Process on Moisture Content and Drying Rate

In this study, the drying process of Citrus medica fruit was examined depending on MC,
MR, and DR. The changes in calculated MC and DR values depending on drying time are
given in this section. The changes in the moisture content of Citrus medica fruit over time
following the application of the freeze-drying method at various product thicknesses and
cabin pressures are illustrated in Figure 2. Through freeze-drying experiments conducted
at varying product thicknesses and cabin pressures, it was observed that the 3 mm thick
Citrus medica fruit dried at 0.008 mbar cabin pressure had the shortest drying time, whereas
the 7 mm thick product dried at 0.012 mbar cabin pressure had the longest drying time. The
final products obtained from the freeze-drying experiments were compared based on their
moisture contents, and it was found that the minimum moisture content was 15.4% for the
3 mm thick product dried at 0.008 mbar, while the highest moisture content was 20% for
the 7 mm thick product dried at 0.012 mbar. As the cabin pressure and product thickness
increased, the drying time and moisture content of the final product also increased. As seen
in Figure 2, reducing the cabin pressure from 0.012 to 0.008 mbar reduces the drying time
of the final product. As the cabin pressure decreases, drying the product in a shorter time
is consistent with other studies in the literature [47,48]. Additionally, it is expected that
the drying time will shorten as the pressure drops further below the triple point (0.01 ◦C,
6.1173 mbar) of water. In this study, a significant reduction in drying time was observed as
the pressure decreased from 0.012 to 0.008 mbar. Furthermore, it was concluded that the
product dries for a longer period as the product thickness increases. Similar findings have
been reported in the literature, where drying experiments conducted using freeze-drying
and many other drying techniques have shown that drying time increases with sample
thickness [49–53].
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As a result of the experiments carried out at various product thicknesses and cabin
pressures, it was observed that the drying process generally took place in the falling speed
period, as seen in Figure 3. As the moisture content of the products decreased, the drying
speed decreased, and the curves became steeper as the cabin pressure decreased. During
freeze-drying of Citrus medica fruit, the highest drying rate was calculated to be 0.261%/min
(3 mm and 0.008 mbar) when examining Figure 3. It was observed that the drying rate
decreased as the pressure in the drying cabin and the thickness of the product increased.
Furthermore, it is evident that the drying rate is highest at the beginning and decreases
as the moisture content of the product decreases during the drying process. During the
freeze-drying experiments, it was observed that the drying rate of Citrus medica fruit was
in the falling rate period, consistent with existing studies [54–57]. Additionally, it was
found that higher drying rates were achieved at lower drying chamber pressures. Various
studies in the literature also corroborate this study, showing that the drying rate is initially
at its highest value and subsequently decreases as the moisture content of the product
diminishes [58–60].
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3.2. Mathematical Modeling and Statistical Analysis Results of the Freeze-Drying Process

After the experimental studies, six models used in the literature for thin-layer freeze-
drying of Citrus medica fruit and the evaluation criteria used were investigated. When
the data obtained from the freeze-drying experiments were evaluated, the R2 value was
the highest (close to 1), while the χ2 and RMSE values were the lowest (a value close to
0 is targeted). While the R2 varies between 0 and 1, the mathematical model that yields
results closest to 1 is the most suitable model for explaining the behavior and conditions of
thin-layer freeze-drying of Citrus medica fruit.

Figure 4 shows the MR–drying time curves, which change depending on the freeze-
dryer cabin pressure. Upon examination of Figure 4, it was found that lower cabin pressure
resulted in shorter freeze-drying time for the product. The results of the evaluation criteria
used to determine the mathematical model that best describes the freeze-drying processes at
various thicknesses and cabin pressures are shown in Table 5. Considering the mathematical
modeling drying-curve evaluation criterion equations, it was seen that the models that
best describe the drying process of Citrus medica fruit for 3 mm sample thickness are the
Alibas (0.008 and 0.010 mbar) and improved Midilli–Kucuk (0.012 mbar) models. It was
determined that the improved Midilli–Kucuk (0.008 and 0.012 mbar) and Balbay and
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Sahin (0.010 mbar) models are the most suitable models to explain the drying process of
Citrus medica fruit with 5 mm sample thickness. Considering the evaluation criteria results,
it was seen that the models that best describe the freeze-drying process of the 7 mm sample
thickness product are the improved Midilli–Kucuk (0.008 mbar) and Balbay and Şahin
(0.010 and 0.012 mbar) models. Similar to this study, Midilli and Kucuk [24] stated that the
Aghbaslo, Alibas, improved Midilli–Kucuk, and Balbay and Sahin models best predicted
the drying kinetics of green tea leaves, apricot, kiwi, and mammoth pumpkin. Dundar
et al. [61] found similar results, indicating the evaluation of the suitability of the Newton,
Page, Aghbaslo, and Alibas models in a discussion on the hot-air drying and freeze-drying
characteristics of Prunus domestica flowers.
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Table 5. Evaluation criteria for drying Citrus medica fruits with various thicknesses and cabin pressures.

M
0.008 mbar 0.010 mbar 0.012 mbar

R2 χ2 RMSE R2 χ2 RMSE R2 χ2 RMSE

3 mm

1 0.99168 0.00102 0.02942 0.98766 0.00164 0.03749 0.98754 0.00181 0.03965
2 0.99966 0.00006 0.00596 0.99927 0.00013 0.00914 0.99235 0.00145 0.03106
3 0.99945 0.00008 0.00757 0.99927 0.00012 0.00914 0.99906 0.00016 0.01086
4 0.99964 0.00006 0.00615 0.99934 0.00012 0.00866 0.99924 0.00014 0.00981
5 0.97264 0.00308 0.05334 0.97633 0.00290 0.05192 0.98459 0.00208 0.04409
6 0.99678 0.00040 0.01830 0.98803 0.00159 0.03692 0.99193 0.00117 0.03190

5 mm

1 0.98615 0.00189 0.04030 0.98979 0.00147 0.03589 0.99355 0.00104 0.03031
2 0.99967 0.00006 0.00620 0.97312 0.00493 0.05823 0.99931 0.00014 0.00995
3 0.99967 0.00005 0.00623 0.99961 0.00007 0.00700 0.99929 0.00013 0.01009
4 0.99969 0.00006 0.00599 0.99950 0.00009 0.00796 0.99943 0.00012 0.00902
5 0.97402 0.00328 0.05519 0.98645 0.00182 0.04133 0.99347 0.00099 0.03051
6 0.99306 0.00095 0.02853 0.99377 0.00090 0.02804 0.99475 0.00085 0.02736

7 mm

1 0.99085 0.00125 0.03306 0.73033 0.04603 0.20154 0.99364 0.00122 0.03292
2 0.96462 0.00614 0.06500 0.99161 0.00179 0.03555 0.97903 0.00495 0.05979
3 0.99871 0.00020 0.01240 0.99854 0.00029 0.01481 0.99922 0.00017 0.01156
4 0.99921 0.00014 0.00968 0.99854 0.00031 0.01484 0.99872 0.00030 0.01475
5 0.98458 0.00196 0.04291 0.99058 0.00151 0.03766 0.99161 0.00151 0.03781
6 0.99465 0.00073 0.02527 0.99074 0.00158 0.03735 0.99217 0.00150 0.03653

M: model number; 1: Aghbaslo model; 2: Alibas model; 3: Balbay and Sahin model; 4: improved Midilli–Kucuk
model; 5: Newton model; 6: Page model.
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Additionally, Table 6 provides the drying-curve equations and pictures of the final
product of the most suitable models for describing the drying process of Citrus medica fruits
that are dried at various product thicknesses and cabin pressures.

Table 6. The best model and photos obtained during Citrus medica freeze-drying experiments.

Thickness (mm) Cabin Pressure (mbar) Best Model/Model Equation Photo

3

0.008 Alibas Model
MR = 0.803695exp

(
−0.033442t0.679641)− 0.000147t + 0.196569
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Thickness 
(mm) 

Cabin Pressure 
(mbar) Best Model/Model Equation Photo 

3 

0.008 
Alibas Model MR = 0.803695 exp(−0.033442t . ) − 0.000147t+ 0.196569  

0.010 
Alibas Model MR = 1.260233 exp(−0.036462t . ) − 0.000019− 0.259875  

0.012 

Improved Midilli–Kucuk Model MR = 1.999460 exp(0.023095t . )− exp(−0.036845t . )− 0.122788t .   

5 0.008 

Improved Midilli–Kucuk Model MR = 2.000004 exp(−0.073190t . )− exp(−1.205606t . )− 0.502613t .   

0.010 Alibas Model
MR = 1.260233exp

(
−0.036462t0.506176)− 0.000019 − 0.259875
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0.012
Improved Midilli–Kucuk Model
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Thickness 
(mm) 

Cabin Pressure 
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3 

0.008 
Alibas Model MR = 0.803695 exp(−0.033442t . ) − 0.000147t+ 0.196569  

0.010 
Alibas Model MR = 1.260233 exp(−0.036462t . ) − 0.000019− 0.259875  

0.012 

Improved Midilli–Kucuk Model MR = 1.999460 exp(0.023095t . )− exp(−0.036845t . )− 0.122788t .   

5 0.008 

Improved Midilli–Kucuk Model MR = 2.000004 exp(−0.073190t . )− exp(−1.205606t . )− 0.502613t .   

0.010 Balbay and Sahin Model
MR = (1 + 0.364890)exp

(
−0.017722t0.579008)− 0.364830
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3.3. Results of the Artificial Neural Network 
The trained ANN demonstrates promising performance in predicting drying pa-

rameters, with low mean squared error (MSE), root mean squared error (RMSE), and 
high R-squared values on both training and validation datasets. The model effectively 
captures complex relationships among input features and drying parameters, demon-
strating robustness and predictive accuracy across diverse drying conditions and product 
types. Sensitivity analysis reveals the relative importance of input variables in influenc-
ing predicted drying parameters, offering valuable insights for process optimization and 
control. In this study, the ANN was used to model the data collected during experiments 
conducted under various product thicknesses and cabin pressures. In this section, the 
regression analysis results of the model that was developed based on three inputs (drying 
time, cabin pressure, and product thickness) and three outputs (MC, MR, and DR) are 
presented graphically. To ensure the best possible results from the experiment data, the 
data were clustered into 15% testing, 15% validation, and 70% training. All parameters in 
the ANN coding were calculated based on these values, and the resulting modeling 
outcomes are presented in Figure 5. The analysis of all data showed that values above 
0.999 were obtained, and in terms of test results, a value above 0.998 was achieved. The 
ANN model closely approximates a value of 1.0, indicating its validity in modeling the 
freeze-drying process of Citrus medica fruit at various product thicknesses and cabin 
pressures. 

0.012
Improved Midilli–Kucuk Model

MR = 2.000009exp
(
0.099977t0.242429)−

exp
(
−0.770938t0.242429)− 0.599361t0.242429

Processes 2024, 12, 1362 12 of 20 
 

 

0.010 
Balbay and Sahin Model MR = (1 + 0.364890) exp(−0.017722t . )− 0.364830 

 

0.012 

Improved Midilli–Kucuk Model MR = 2.000009 exp(0.099977t . )− exp(−0.770938t . )− 0.599361t .   

7 

0.008 

Improved Midilli–Kucuk Model MR = 2.000778 exp(3.17137t . )− exp(3.84705t . )+ 0.795827t .   

0.010 Balbay and Sahin Model MR = (1.516645) exp(−0.007073t . ) − 0.519823  

0.012 Balbay and Sahin Model MR = (1.685009) exp(−0.004238t . ) − 0.686328 
 

3.3. Results of the Artificial Neural Network 
The trained ANN demonstrates promising performance in predicting drying pa-

rameters, with low mean squared error (MSE), root mean squared error (RMSE), and 
high R-squared values on both training and validation datasets. The model effectively 
captures complex relationships among input features and drying parameters, demon-
strating robustness and predictive accuracy across diverse drying conditions and product 
types. Sensitivity analysis reveals the relative importance of input variables in influenc-
ing predicted drying parameters, offering valuable insights for process optimization and 
control. In this study, the ANN was used to model the data collected during experiments 
conducted under various product thicknesses and cabin pressures. In this section, the 
regression analysis results of the model that was developed based on three inputs (drying 
time, cabin pressure, and product thickness) and three outputs (MC, MR, and DR) are 
presented graphically. To ensure the best possible results from the experiment data, the 
data were clustered into 15% testing, 15% validation, and 70% training. All parameters in 
the ANN coding were calculated based on these values, and the resulting modeling 
outcomes are presented in Figure 5. The analysis of all data showed that values above 
0.999 were obtained, and in terms of test results, a value above 0.998 was achieved. The 
ANN model closely approximates a value of 1.0, indicating its validity in modeling the 
freeze-drying process of Citrus medica fruit at various product thicknesses and cabin 
pressures. 

7

0.008
Improved Midilli–Kucuk Model

MR = 2.000778exp
(
3.17137t0.006352)− exp

(
3.84705t0.006352)+

0.795827t0.006352

Processes 2024, 12, 1362 12 of 20 
 

 

0.010 
Balbay and Sahin Model MR = (1 + 0.364890) exp(−0.017722t . )− 0.364830 

 

0.012 

Improved Midilli–Kucuk Model MR = 2.000009 exp(0.099977t . )− exp(−0.770938t . )− 0.599361t .   

7 

0.008 

Improved Midilli–Kucuk Model MR = 2.000778 exp(3.17137t . )− exp(3.84705t . )+ 0.795827t .   

0.010 Balbay and Sahin Model MR = (1.516645) exp(−0.007073t . ) − 0.519823  

0.012 Balbay and Sahin Model MR = (1.685009) exp(−0.004238t . ) − 0.686328 
 

3.3. Results of the Artificial Neural Network 
The trained ANN demonstrates promising performance in predicting drying pa-

rameters, with low mean squared error (MSE), root mean squared error (RMSE), and 
high R-squared values on both training and validation datasets. The model effectively 
captures complex relationships among input features and drying parameters, demon-
strating robustness and predictive accuracy across diverse drying conditions and product 
types. Sensitivity analysis reveals the relative importance of input variables in influenc-
ing predicted drying parameters, offering valuable insights for process optimization and 
control. In this study, the ANN was used to model the data collected during experiments 
conducted under various product thicknesses and cabin pressures. In this section, the 
regression analysis results of the model that was developed based on three inputs (drying 
time, cabin pressure, and product thickness) and three outputs (MC, MR, and DR) are 
presented graphically. To ensure the best possible results from the experiment data, the 
data were clustered into 15% testing, 15% validation, and 70% training. All parameters in 
the ANN coding were calculated based on these values, and the resulting modeling 
outcomes are presented in Figure 5. The analysis of all data showed that values above 
0.999 were obtained, and in terms of test results, a value above 0.998 was achieved. The 
ANN model closely approximates a value of 1.0, indicating its validity in modeling the 
freeze-drying process of Citrus medica fruit at various product thicknesses and cabin 
pressures. 

0.010 Balbay and Sahin Model
MR = (1.516645)exp

(
−0.007073t0.671396)− 0.519823

Processes 2024, 12, 1362 12 of 20 
 

 

0.010 
Balbay and Sahin Model MR = (1 + 0.364890) exp(−0.017722t . )− 0.364830 

 

0.012 

Improved Midilli–Kucuk Model MR = 2.000009 exp(0.099977t . )− exp(−0.770938t . )− 0.599361t .   

7 

0.008 

Improved Midilli–Kucuk Model MR = 2.000778 exp(3.17137t . )− exp(3.84705t . )+ 0.795827t .   

0.010 Balbay and Sahin Model MR = (1.516645) exp(−0.007073t . ) − 0.519823  

0.012 Balbay and Sahin Model MR = (1.685009) exp(−0.004238t . ) − 0.686328 
 

3.3. Results of the Artificial Neural Network 
The trained ANN demonstrates promising performance in predicting drying pa-

rameters, with low mean squared error (MSE), root mean squared error (RMSE), and 
high R-squared values on both training and validation datasets. The model effectively 
captures complex relationships among input features and drying parameters, demon-
strating robustness and predictive accuracy across diverse drying conditions and product 
types. Sensitivity analysis reveals the relative importance of input variables in influenc-
ing predicted drying parameters, offering valuable insights for process optimization and 
control. In this study, the ANN was used to model the data collected during experiments 
conducted under various product thicknesses and cabin pressures. In this section, the 
regression analysis results of the model that was developed based on three inputs (drying 
time, cabin pressure, and product thickness) and three outputs (MC, MR, and DR) are 
presented graphically. To ensure the best possible results from the experiment data, the 
data were clustered into 15% testing, 15% validation, and 70% training. All parameters in 
the ANN coding were calculated based on these values, and the resulting modeling 
outcomes are presented in Figure 5. The analysis of all data showed that values above 
0.999 were obtained, and in terms of test results, a value above 0.998 was achieved. The 
ANN model closely approximates a value of 1.0, indicating its validity in modeling the 
freeze-drying process of Citrus medica fruit at various product thicknesses and cabin 
pressures. 

0.012 Balbay and Sahin Model
MR = (1.685009)exp

(
−0.004238t0.708128)− 0.686328

Processes 2024, 12, 1362 12 of 20 
 

 

0.010 
Balbay and Sahin Model MR = (1 + 0.364890) exp(−0.017722t . )− 0.364830 

 

0.012 

Improved Midilli–Kucuk Model MR = 2.000009 exp(0.099977t . )− exp(−0.770938t . )− 0.599361t .   

7 

0.008 

Improved Midilli–Kucuk Model MR = 2.000778 exp(3.17137t . )− exp(3.84705t . )+ 0.795827t .   

0.010 Balbay and Sahin Model MR = (1.516645) exp(−0.007073t . ) − 0.519823  

0.012 Balbay and Sahin Model MR = (1.685009) exp(−0.004238t . ) − 0.686328 
 

3.3. Results of the Artificial Neural Network 
The trained ANN demonstrates promising performance in predicting drying pa-

rameters, with low mean squared error (MSE), root mean squared error (RMSE), and 
high R-squared values on both training and validation datasets. The model effectively 
captures complex relationships among input features and drying parameters, demon-
strating robustness and predictive accuracy across diverse drying conditions and product 
types. Sensitivity analysis reveals the relative importance of input variables in influenc-
ing predicted drying parameters, offering valuable insights for process optimization and 
control. In this study, the ANN was used to model the data collected during experiments 
conducted under various product thicknesses and cabin pressures. In this section, the 
regression analysis results of the model that was developed based on three inputs (drying 
time, cabin pressure, and product thickness) and three outputs (MC, MR, and DR) are 
presented graphically. To ensure the best possible results from the experiment data, the 
data were clustered into 15% testing, 15% validation, and 70% training. All parameters in 
the ANN coding were calculated based on these values, and the resulting modeling 
outcomes are presented in Figure 5. The analysis of all data showed that values above 
0.999 were obtained, and in terms of test results, a value above 0.998 was achieved. The 
ANN model closely approximates a value of 1.0, indicating its validity in modeling the 
freeze-drying process of Citrus medica fruit at various product thicknesses and cabin 
pressures. 

3.3. Results of the Artificial Neural Network

The trained ANN demonstrates promising performance in predicting drying param-
eters, with low mean squared error (MSE), root mean squared error (RMSE), and high
R-squared values on both training and validation datasets. The model effectively cap-
tures complex relationships among input features and drying parameters, demonstrating
robustness and predictive accuracy across diverse drying conditions and product types.
Sensitivity analysis reveals the relative importance of input variables in influencing pre-
dicted drying parameters, offering valuable insights for process optimization and control.
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In this study, the ANN was used to model the data collected during experiments conducted
under various product thicknesses and cabin pressures. In this section, the regression
analysis results of the model that was developed based on three inputs (drying time, cabin
pressure, and product thickness) and three outputs (MC, MR, and DR) are presented graph-
ically. To ensure the best possible results from the experiment data, the data were clustered
into 15% testing, 15% validation, and 70% training. All parameters in the ANN coding
were calculated based on these values, and the resulting modeling outcomes are presented
in Figure 5. The analysis of all data showed that values above 0.999 were obtained, and
in terms of test results, a value above 0.998 was achieved. The ANN model closely ap-
proximates a value of 1.0, indicating its validity in modeling the freeze-drying process of
Citrus medica fruit at various product thicknesses and cabin pressures.
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The study compared the predicted and actual MC, MR, and DR data obtained during
the freeze-drying of Citrus medica fruit at various cabin pressures and thicknesses. The
relationship between the experimental values and the predicted values obtained from
prediction using ANN models is shown in Figures 6–8. The ANN predicted the MC, MR,
and DR of freeze-dried Citrus medica fruit at various product thicknesses and cabin pressures
with reasonable accuracy, as shown by the plot of experimental and predicted data.
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As a result of comparing the experimental MC with the predicted MC from the
ANN modeling created by considering various product thicknesses and cabin pressures in
Figure 6, the R2 value was found to be 0.998 and the RMSE value was 0.0064.

As a result of comparing the experimental DR with the predicted DR from the ANN
modeling created by considering various product thicknesses and cabin pressures in
Figure 7, the R2 value was found to be 0.984 and the RMSE value was 0.0057.

As a result of comparing the experimental MR with the predicted MR from the
ANN modeling created by considering various product thicknesses and cabin pressures in
Figure 8, the R2 value was found to be 0.998 and the RMSE value was 0.010574. It is note-
worthy that the thin-layer mathematical models (R2 = from 0.730 to 0.999; RMSE = from 0.2
to 0.005) demonstrated a strong ability to compete with the extraordinary predictive capa-
bilities of the ANN. This may be attributed to the fact that the drying data used in the study
were less complex. However, it is important to consider that the addition of more drying
variables could potentially cause semi-empirical models to become erratic, making the
use of an ANN more effective in such cases. Although mathematical models can compete
with ANNs, an ANN can be used not only to predict MR but also to predict other outputs
such as moisture content and drying rate. Therefore, although mathematical models are
insufficient to explain the drying process because they only estimate the dimensionless
mass loss ratio, the ANN stands out as a superior prediction tool. According to the main
findings of this study, the ANN produced outputs that were consistent with the results
reported in the literature for various products dried using freeze-drying and other drying
techniques [21,62–64]. Utilizing the ANN approach for drying significantly enhanced the
overall drying performance. Optimization of input factors and effective management of the
drying process can reduce drying time, increase energy efficiency, and enhance profitability.
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3.4. Examination of Quality Characteristics of Dried Citrus medica Fruit

Color change, water activity, and effective moisture diffusivity of Citrus medica fruits
were investigated after drying at various thicknesses and cabin pressures and compared to
the fresh fruit. The change in the quality characteristics of the Citrus medica fruit after the
freeze-drying process is presented in Table 7. Upon examining the experimental data, it
was observed that the Citrus medica fruit that was 7 mm thick and dried under 0.008 mbar
pressure underwent the most significant color change. Additionally, the lightness and
yellowness/blueness of the dried product increased as the cabin pressure decreased. It
was observed that drying Citrus medica fruits under 0.008 mbar pressure resulted in higher
lightness and yellowness/blueness values. The lightness decreases as the drying cabin
pressure and product thickness increases. Considering the redness/greenness values, it
was observed that this value increases as the cabin pressure and product thickness increase.
The alterations observed in the L*, a*, and b* values of the freeze-dried end-product were
in accordance with the findings of Udomkun et al. (2018) [65]. The water activity of
freeze-dried Citrus medica fruits varied between 0.4086 ± 0.0104 and 0.5925 ± 0.0064. It was
observed that the lowest water activity was measured at a cabin pressure of 0.008 mbar
and product thickness of 3 mm. As the thickness of the product and its cabin pressure
increase, the water activity of the product also increases. High water activity may cause
microorganisms to grow in the product. As a result of freeze-drying experiments carried out
with low product thickness and cabin pressure, products with longer storage times can be
obtained. As a result of the freeze-drying experiments, the effective moisture diffusivity of
the Citrus medica fruits was found to be between 4.19 × 10−11 and 21.4 × 10−11 m2/s. As the
cabin pressure decreases and product thickness increases, the effective moisture diffusivity
increases. This situation can be explained by the fact that under drying conditions, cabin
pressure decreases, which causes moisture in the product to evaporate more easily, thus
increasing the drying rate. The effective moisture diffusivity values obtained in this study
are within the commonly observed range of 10−6 to 10−12 m2/s for the drying of food
materials. Specifically, the effective moisture diffusivity values align with those reported in
prior studies on linden (4.13–5.89 × 10−12 m2/s), turmeric (1.01–9.12 × 10−9 m2/s), and
pineapple (24.3 × 10−7 m2/s) [21,66,67].

Table 7. Quality characteristics of dried Citrus medica fruit.

p Th. L* a* b* ∆E h aw Deff× 10−11

Fresh 14.7 ± 2.1 −3.1 ± 1.4 7.2 ± 3.0 - - 0.9845 ± 0.0062 -
0.008 3 28.5 ± 1.6 0.4 ± 0.3 9.2 ± 2.2 14.4 ± 0.9 87.5 ± 1.1 0.4086 ± 0.0104 4.38

5 27.2 ± 2.1 2.5 ± 1.1 19.6 ± 1.9 18.5 ± 0.9 82.7 ± 2.3 0.4979 ± 0.0402 10.8
7 26.4 ± 1.3 3.1 ± 0.7 23.5 ± 2.6 21.0 ± 0.6 82.4 ± 0.7 0.5622 ± 0.0213 21.4

0.010 3 23.2 ± 1.2 1.1 ± 0.6 8.8 ± 1.7 9.6 ± 1.3 82.9 ± 2.1 0.4479 ± 0.0315 4.20
5 22.7 ± 1.8 3.0 ± 1.2 17.9 ± 2.2 14.7 ± 0.9 80.5 ± 1.6 0.5152 ± 0.0268 10.2
7 20.4 ± 1.5 3.4 ± 0.6 22.0 ± 2.5 17.1 ± 0.8 81.2 ± 0.5 0.5771 ± 0.0461 21.3

0.012 3 19.7 ± 2.6 1.7 ± 0.4 7.9 ± 2.0 6.9 ± 0.2 77.9 ± 0.1 0.4891 ± 0.0279 4.19
5 18.6 ± 2.3 3.4 ± 0.9 16.6 ± 1.3 12.1 ± 1.5 78.4 ± 1.9 0.5213 ± 0.0201 9.7
7 16.8 ± 1.3 3.6 ± 1.7 21.7 ± 1.9 16.1 ± 0.9 80.6 ± 2.7 0.5925 ± 0.0064 16.8

This study was conducted under specific cabin pressure ranges (from 0.008 to 0.012 mbar),
using three different product thicknesses (3, 5, and 7 mm), and controlled laboratory condi-
tions. Experiments were conducted exclusively on Citrus medica fruit, with no investigation
into the response of different fruit types or varying cabin pressures to the freeze-drying
process. While consistent with existing studies in the literature, determining the applicabil-
ity of the study’s findings to other fruit types or drying techniques necessitates testing with
different products.
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4. Conclusions

In this study, the process of freeze-drying Citrus medica fruit was examined under
various cabin pressures and thicknesses. Six different mathematical models were applied
to the experimental data to determine the thin-layer drying kinetics of the fruit. The
experiments were carried out until the product reached equilibrium moisture. The results
showed that the quickest drying process occurred when the product was 3 mm thick and
dried under 0.008 mbar cabin pressure. Conversely, the longest drying process occurred
when the product was 7 mm thick and dried under 0.012 mbar cabin pressure. The
experiments concluded that as the product thickness and cabin pressure increase, the
drying time also increases. Furthermore, the minimum moisture content was achieved
at minimum product thickness and low cabin pressure. The moisture content of the
final product was highest when the 7 mm thick product was dried under 0.012 mbar
cabin pressure. The freeze-drying experiments of Citrus medica fruit conducted at various
thicknesses and cabin pressures concluded that the moisture content ranged between 15.4%
and 20%. The best mathematical models to fit the experimental data were found to be the
Alibas, improved Midilli–Kucuk, and Balbay and Sahin models. An ANN was created
using the MC, MR, and DR values obtained during the experiments, and the drying process
was well defined based on the R2 and RMSE obtained. By comparing the experimental
MC with the predicted MC from the ANN modeling, which was developed by considering
various product thicknesses and cabin pressures, it was concluded that the R2 value was
0.998 and the RMSE value was 0.0064. Similarly, the comparison of the experimental DR
with the predicted DR from the same ANN model indicated that the R2 value was 0.984
and the RMSE value was 0.0057. Additionally, the comparison of the experimental MR with
the predicted MR showed that the R2 value was 0.998 and the RMSE value was 0.010574.
The examination of the color change in dried Citrus medica fruit, as a result of freeze-drying
experiments, revealed that the lightness (16.8 ± 1.3–28.5 ± 1.6) and yellowness/blueness
(7.9 ± 2.0–23.5 ± 2.6) of the final product decreased with increasing cabin pressure (from
0.008 to 0.012 mbar). Results show that as the thickness of freeze-dried Citrus medica
fruit increased and the drying cabin pressure decreased, the effective moisture diffusivity
(4.19 × 10−11–21.4 × 10−11) increased. By accurately modeling the drying process and
predicting crucial parameters such as MC, MR, and DR, ANNs can contribute to optimizing
process conditions, enhancing product quality, and reducing energy consumption. Future
research may explore the integration of ANNs with advanced optimization techniques and
experimental validation to further enhance model accuracy and applicability in real-world
food processing scenarios.
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