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A B S T R A C T

Aluminum–Silicon (Al–Si) based materials are commonly preferred in engineering studies requiring high me
chanical performance as an alternative to steel materials. These alloys are especially preferred in the automotive 
industry, aerospace components and heavy machinery parts. In post-casting processes, machining operations are 
of great importance for high geometric precision, surface quality and longer fatigue life in mechanical envi
ronments. In this research, the microstructural, mechanical and machining characteristics of the Al–5Si–1Cu–Mg 
material produced by sand casting method in both as-cast (AC) and heat-treated (HTed) (Solid solution, 
quenching and aging-SQA) states were experimentally investigated. Microstructural examinations were carried 
out with optical microscope and SEM images. Mechanical properties were determined by tensile and hardness 
tests. Then, drilling experiments were performed in the CNC vertical machining center with 8 mm diameter 
uncoated HSS (High Speed Steel) cutting tools at constant cutting conditions (i.e., cutting speed-V: 125 m/min, 
feed rate-f: 0.05 mm/rev and depth of cut-DoC: 15 mm). In microstructural investigations, it was determined that 
the microstructure of the Al–5Si–1Cu–Mg material in AC state consists of α-Al, eutectic Si, β-Fe (β-Al5FeSi) and 
π-Fe (π-Al8Mg3FeSi6) intermetallics. After the SQA, the existing phases generally exhibited a spherical structure, 
and it was seen that the β phase in the microstructure transformed into the Ɵ (Al7FeCu2) phase. SQA improved 
the hardness, yield and tensile durability of the material, whereas decreasing the elongation to fracture. SQA 
process improved the machining characteristics of the material by decreasing thrust force, moment, surface 
roughness and built-up edge (BUE) formation. The machined subsurface structure of HTed alloy under constant 
cutting conditions was determined to be more stable and smooth and the machined surface microhardness of 
HTed alloy was higher compared to as-cast alloy due to the effect of solid precipitation hardening. In addition, 
shorter and more broken chips occurred in the machining of HTed alloys due to the effect of low elongation to 
fracture.

1. Introduction

Al–Si materials are frequently preferred in gasoline and diesel en
gines in the automotive sector in terms of their high specific durability, 
temperature resistance, thermal conductivity and superior castability 
properties [1,2]. Diesel engines offer further enhanced power, economy 
and high thermal efficiency under severe operating conditions. This 
situation reveals the need to develop the mechanical features of 
Al–Si-based materials. On the other hand, an important factor limiting 
the use of Al–Si-based materials is their poor toughness under load. This 
occurs largely due to the plate-like irregular morphology of the brittle 

eutectic Si phases [3]. By adding different elements to Al–Si alloys, their 
mechanical and physical properties can be improved. While Si improves 
the castability, fluidity and mechanical features of aluminum materials, 
the copper and magnesium addition increases the strength and hardness 
features [4]. The addition of Cu increases the hardening and aging po
tential of the alloy, providing strength at high temperatures. Mg, on the 
other hand, increases mechanical strength and improves corrosion 
resistance by promoting precipitation hardening [5,6]. Mg addition in
creases the strength of the material during aging by precipitating sub
microscopic and metastable structures including Mg and Si. These 
phases ensure excellent barriers to dislocation motion [7,8]. The 
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addition of up to 0.5% Mg by weight in Al–Si materials causes the cre
ation of a Mg2Si structure in the form of point, round, black spalls at the 
edges of eutectic Si spalls. This allows a significant modification of the 
eutectic Si phase and the transformation of a large part of the β-Al5FeSi 
iron (Fe)-containing intermetallic into a Chinese alphabet-like structure 
with a composition close to the Al8Mg3FeSi6 phase [9]. Mg significantly 
impacts the type and total volume fraction of Fe-containing structures, 
especially in materials that do not contain beryllium (Be). In low-Mg 
content alloys, Fe-rich intermetallic phases consist almost entirely of 
small β-Al5FeSi plates. In alloys containing high Mg, large π-Al8Mg3
FeSi6 particles become dominant with a small ratio of β phase [10]. 
Moreover, the solidification rate has a significant impact on the shape, 
size and distribution of microstructural. This variable causes Al den
drites to differ in size and composition of eutectic Si and pore size, as 
well as Fe intermetallics. In Al–Si–Cu materials, the existence of Cu 
causes the formation of the CuAl2 phase. It was observed that this 
block-like CuAl2 phase did not dissolve during HT [11]. When brittle 
CuAl2 is present, the fracture mechanism cannot be controlled by 
eutectic Si particles. In addition, the impact features of Al–Si casting 
materials containing Cu are poor, and the existence of Cu greatly con
tributes to the reduction of impact features. The fracture characteristic 
of the alloy is affected by undissolved Cu structures, not by Si particles. If 
Fe is present in the material, platelet-shaped β-Al5FeSi and code-like 
α-Al15 (Mn,Fe)3Si2 intermetallics are formed during solidification. Dur
ing the solidification, β-Al5FeSi platelets serve as active areas for the 
nucleation of the CuAl2. Since the solubility of Fe in the Al matrix is 
negligible, Fe intermetallics are less likely to dissolve completely; 
however, a certain amount of fragmentation and globalization may 
reveal [12].

In Al–Si–Cu–Mg alloys, hardness and tensile strength features 
decrease due to the transformation of precipitates in the microstructure 
into a coarser-grained structure under the influence of working condi
tions at temperatures higher than 200 ◦C in repetitive cyclic loading in 
mechanical systems. The coexistence of Cu and Mg in these alloys 
significantly improves the heat treatment ability. Heat treatment is 
widely applied to improve the mechanical features of aluminium ma
terials [13,14]. T6 heat treatment (HT) is one of the most frequently 
preferred methods in this context and consists of solution and artificial 
aging stages. This process changes the microstructure of the alloy and 
increases its properties such as strength, hardness and durability [15,
16]. Solution HT of Al–Si–Cu–Mg materials is applied to homogenize the 
material, improve the morphology of interdendritic structures, and 
dissolve hardening precipitation phases such as CuAl2, Al2MgCu and 
Mg2Si [17]. This process optimizes the solubility and distribution of 
many phases in the alloy, providing a decisive effect on the mechanical 
properties.

Components produced by casting for industrial applications must be 
subjected to machining operations before use to work efficiently in 
mechanical systems. This is an important process to achieve maximum 
efficiency in terms of dimensional stability, surface quality, service and 
fatigue life. In machining operations, input factors such as V, f, DoC, 
coolant, cutting tool material and coating are decisive on quality char
acteristics. This situation requires a more comprehensive investigation 
of the machining properties of these materials. Bolt or pin joining 
methods can be preferred in the assembly of automotive equipment such 
as engine blocks, cylinder heads, pistons and rims made of Al–Si based 
alloys. For this purpose, it is extremely important to apply drilling op
erations to these materials to ensure optimum dimensional and geo
metric tolerance stability after casting. Some research in the academic 
community on the machining properties of Al–Si based materials are as 
follows: Machado et al. [18] reported that T6 heat treatment of Al-(% 
3–12)Si-0.6 Mg materials (10 h of solution at 540 ◦C, quenching at 25 ◦C, 
and 5 h of artificial aging at 155 ◦C) increased the hardness of the alloy 
by approximately 1.6 times compared to the as-cast state. Moreover, the 
increase in hardness also improved the machinability characteristics. 
Bayraktar and Hekimoğlu [19] while turning Al–12Si-0.1Sr alloy 

(Uncoated carbide insert, V: 200, 300 and 400 m/min, f: 0.05; 0.1 and 
0.15 mm/rev, DoC: 1.5 mm) found that cutting force-F, surface rough
ness-Ra and BUE formation reduced with rising cutting speed, whereas 
they increased with rising feed rate. Gonçalves et al. [20] studied the 
effect of Cu content (0.07–1.93%) and feed on machining properties in 
drilling Al–Si–Mg (AA6351) alloy (V: 60–100 m/min and f: 0.1–0.3 
mm/rev). They stated that torque and feed forces increased, and the 
machined surface quality decreased at feed rates higher than 0.2 
mm/rev in alloys containing 1.43% and 1.93% Cu. Barakat et al. [21] 
investigated the machining features of Al–Si based A319 and A356 and 
Al–Cu alloys in drilling and tapping processes. It was reported that the 
highest cutting force (approximately 360 N) in T6 HTed Al–Si based 
alloys was measured after 2500 holes. Moreover, it was found that high 
Cu content in Al–Cu based alloys reduces tool wear by acting as a 
lubricant (Approximately 2700 holes). Sadiq et al. [22] found that sur
face roughness decreased as the speed increased in drilling AA6061T6, 
LM6 and AA5083 alloys. Additionally, they observed that while minimal 
BUE was formed under constant cutting conditions in AA6061T6 and 
AA5083 alloys, relatively more BUE was formed in the LM6 material. 
Bayraktar and Demir [23] turned the AC and T6 HTed Al–12Si-0.6 Mg 
material produced by the permanent mold casting technique and found 
that the minimum Ra, F, BUE and built-up layer (BUL) were achieved 
with uncoated tools and that the HT improved the machining properties 
of the material. Giasin et al. [24] found that the Ra, burr height and 
thickness increased with increasing f when drilling Al2024-T3 alloy.

When the literature is generally evaluated, it is seen that the struc
tural, mechanical and machining (SMM) characteristics of Al–Si based 
materials have been studied in a limited way. Moreover, it has been 
revealed that the SMM features of the Al–5Si–1Cu–Mg material, which is 
exposed to repeated thermal cyclic processes, in the AC and HTed state 
have not been researched. In this research, it was aimed to investigate 
the structural and mechanical properties of the AC and HTed 
Al–5Si–1Cu–Mg material produced by sand casting method, as well as 
the thrust force, moment, surface roughness, machined subsurface 
hardness and tool wear in the drilling process. Therefore, it is intended 
to contribute to the academic and industrial sectors by optimizing the 
production and processing parameters of cast components.

2. Experimental procedure

In the study, sand-cast and heat-treated samples were prepared in 
appropriate dimensions and geometry for microstructural, mechanical 
and processing tests. Microstructural examinations were carried out 
with optical microscope and SEM. Hardness and tensile tests were 
applied for mechanical examinations. Outputs such as feed force, 
moment, surface roughness, machined subsurface hardness, BUE and 
BUL were analyzed for machinability tests in the drilling process. The 
workflow diagram for the procedure is given in Fig. 1.

2.1. Preparation of sand casted specimens

In this study, the quaternary Al–5Si–1Cu–Mg alloy consisting of Al, 
Si, Cu and Mg elements was manufactured by sand mold casting tech
nique. Commercial purity aluminum (99.7%), Si, Cu and Mg elements 
were used to produce the alloy. The elemental composition of the ma
terial (wt.%) was specified by analysis with the ICP-OES technique and 
results are tabulated in Table 1.

The components forming the alloy were melted at a temperature 
range of 700 ± 5 ◦C. This molten structure was poured into a pre- 
prepared sand mold with an angled prismatic mold cavity, allowing 
the alloys to solidify at room temperature. After the solidification pro
cess was completed, the sand mold was dismantled and cast samples 
were obtained. A total of eight of these samples were produced and 
prepared for microstructure, mechanical and processability tests in AC 
and HTed conditions. Before the tests, the cast materials were adjusted 
to the dimensions with a pre-machining operation on the universal 

Ş. Bayraktar et al.                                                                                                                                                                                                                              Journal of Materials Research and Technology 33 (2024) 2764–2772 

2765 



milling machine and were prepared for drilling tests in the CNC John
ford VMC-850 milling machine (7.5 kW). The samples were then sub
jected to solid solution processes at 520 ◦C for 5 h and quenching at 
60 ◦C water temperature for 25 min and then aging at 165 ◦C for 8 h was 
applied in a Protherm Mos 170/8 model oven [25,26].

2.2. Preparation of microstructural, hardness, tensile and drilling test 
samples

The microstructure sample taken from the workpiece produced by 
sand casting method in as-cast and heat-treated condition was placed in 
bakelite by mixing powder and hardening liquid in the ratio of 2/1. 
Sanding, polishing and etching processes were applied to the samples 

removed from the bakelite container, respectively. After these proced
ures, the samples were made ready for microstructural examinations. 
Microstructural examinations were performed using OM and SEM. 
Phase analysis of the internal structure of the alloy was carried out using 
energy dispersive spectroscopy (EDS).

In order to determine the mechanical features of the material, AC and 
HTed samples were prepared for hardness and tensile tests (Fig. 2). 
Hardnesses were specified on a Qness Q250CS brand equipment using a 
62.5 kgf load and a 2.5 mm diameter tip based on Brinell hardness 
method. Measurement processes were repeated five times for each of the 
AC and HTed pieces and the final hardness values were specified by 
calculating the averages. Tensile tests were performed using a constant 
jaw speed of 0.25 mm/min and an average deformation rate of 5.9 × 10- 

Fig. 1. Workflow diagram.

Table 1 
The composition of Al–5Si–1Cu–Mg alloy.

Alloy Element (wt.%)

Si Fe Cu Mn Mg Ni Zn Ti Al

Al–5Si–1Cu–Mg min 4.5 <0.01 1.10 <0.01 0.45 <0.01 <0.01 <0.01 Balance
max 5.5 0.5 1.50 0.1 0.65 0.10 0.05 0.15
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3s-1. A total of six tensile tests were carried out using three samples for 
each of the AC and HTed samples. Elongation to fracture, yield and 
tensile strength were determined by calculating the mean of the ob
tained measurement values. The fracture surfaces formed as a result of 
tensile tests were imaged with SEM.

Drilling tests on AC and HTed alloys were performed with uncoated 
HSS drills (Diameter: 8 mm, point angle: 118◦, cutting length: 75 mm 
and standard number: DIN338). At the end of the preliminary drilling 
experiments, the final cutting parameters (i.e., V: 125 m/min, f: 0.05 
mm/rev and DoC:15 mm) were determined. The vibration signals ob
tained with the dynamometer during the drilling process were trans
mitted to the Kistler 5070A amplifier and these vibration signals were 
transferred to the graphics with the data reading card and Dynoware 
software. As a result of each experiment, thrust force (Fz) and moment 
(Mz) values were determined through these graphs in the Dynoware 
software as seen in Fig. 3.

Mahr Perthometer M1 brand equipment was used to state the 
average Ra in the holes, taking into account the ISO 4287 standard. 
During measurement, the sampling length was taken as 0.8 mm and the 
measurement length was 5.6 mm. Four measurements were taken at 90◦

angles from the entrance, middle and exit points of each machined hole. 
The final average surface roughness values (Ra-μm) were obtained by 
taking the arithmetic average of these measurements. After the drilling 
process, subsurface hardness measurements were carried out on the 
sample. After these samples were cut, they were sanded using bakelite 
and then subjected to polishing processes. Vickers micro hardness tests 
were applied to the polished machined surfaces at a load of 4.90 N/50 g 

and an immersion time of 10 s. During the tests, measurements were 
taken at 10 μm intervals, starting from just below the machined surface, 
and microhardness values were determined.

3. Results and discussion

3.1. Microstructural and mechanical observations

Optical microscope images of the microstructures of AC and HTed 
Al–5Si–1Cu–Mg materials are shown in Fig. 4. It has been observed that 
the internal structure of the as-cast alloys consists of rich-aluminum α, 
fibrous eutectic Si, acicular β-Al5FeSi and π-Fe (Al8Mg3FeSi6). With the 
effect of 0.35% Mg content, the β-Al5FeSi phase in the structure of the 
alloy turned into the π-Fe phase [27]. It was observed that with the 
dissolution and aging process applied to the alloy (T6 heat treatment), 
the Si particles in the internal structure became spherical with the 
impact of the precipitate hardening property and exhibited a grained 
structure of smaller sizes as seen in Fig. 5. Additionally, it was deter
mined that the intermetallic β-Al5FeSi phase precipitated and trans
formed into Ɵ (Al7FeCu2) phase due to heat treatment [28,29]. It is 
thought that the spheroidization of Si particles and the formation of 
Al7FeCu2 intermetallic phase reduces the elongation to fracture by 
increasing the hardness, yield and tensile strength of the material. The 
chemical compositions of the phases in the microstructure of the 
Al–5Si–1Cu–Mg alloy are presented in Table 2. The obtained results 
support the findings in the literature [30].

Hardness, elongation to fracture, yield and tensile strength of AC and 

Fig. 2. Manufactured of samples for mechanical examinations, (a) Hardness sample and (b) Tensile sample.

Fig. 3. Drilling experiment setup.
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HTed materials are shown in Table 3. It was determined that after HT, 
hardness, yield and tensile durability of the material increased by 
29.41%, 28.57% and 44.11%, respectively, while the elongation to 
fracture decreased by 38.88%. It is thought that solid solution hardening 
after HT increases hardness, yield and tensile durability values [31] and 
reduces elongation to fracture [16,32]. In Al–Si based materials, HT, 
apart from spheroidization, thins the eutectic Si particles and distributes 
them homogeneously within the microstructure. With homogeneously 

distributed particles, the resistance to nucleation and crack growth in 
the microstructure of alloys increases. Therefore, it is thought that the 
stress required for the formation of a void or crack at the particle/matrix 
interface in the microstructure increases with the spherical morphology 
that occurs due to heat treatment [33]. Solid solution and aging pro
cesses change the morphology of the eutectic Si phase at grain bound
aries due to recrystallization. In addition, it causes the dissolution of 
intermetallic compounds in the α-Al matrix and the formation of a 

Fig. 4. Representation of the microstructure of Al–5Si–1Cu–Mg material in the AC state, (a) Optic microscope and, (b) SEM images.

Fig. 5. Representation of the microstructure of Al–5Si–1Cu–Mg alloy in the HTed state, (a) OM and, (b) SEM images.

Table 2 
Semi-quantitative compositions of phases.

Chemical composition (wt.%)

Phase Al Si Fe Cu Mg Mn

β-Al5FeSi (Observed) 58.0–70.0 12.3–17.7 15.6–22.5 0.1–0.3 – –
β-Al5FeSi (In literature) [30] 45.2–75.8 5.2–15.0 17.9–35.0 – – –
π (Observed) 57.4–87.1 7.8–23.3 2.2–15.0 1.4–5.5 2.3–7.5 0.4–1.9
π (In literature) [30] 37.7–54.0 25.0–33.8 0.8–11.5 5.3–12.5 9.0–16.0 –
θ (observed) 50.3–70.0 0.7–1.2 0.9–3.5 20–38.5 – –
θ (literature) [30] 47.5–55.0 – – 49.5–52.5 – –

Table 3 
Tensile strength, yield strength, hardness and elongation to fracture values of AC and T6 (SQA) HTed alloys.

Alloy Tensile strength (N/mm2) Yield strength (N/mm2) Hardness of Brinell (HB) Elongation to fracture (%)

As-cast 170 140 85 1.8
Heat treated 245 180 110 1.1
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spherical eutectic Si phase at grain boundaries. In other words, the aim 
of rearranging grain boundaries is to obtain more regular and spherical 
particles.

SEM images of the fracture surfaces resulting from the tensile tests of 
the AC and HTed alloy are given in Fig. 6. It was determined that there 
were pits, ridges, cleavage planes and microcracks in the fracture surface 
images. It is thought that the fracture occurs by following the dendrite 
boundaries and intermetallic phases as well as Si particles have a sig
nificant effect on the fracture characteristics. It has been determined 
that alloys exhibit transgranular brittle fracture characteristics due to 
the decrease in elongation to fracture with heat treatment [23,34]. This 
fracture behavior can be associated with the distribution of Si and other 
secondary phases in the microstructure of the material and the bonding 
characteristics with the matrix.

Under the stress applied to the alloy, large Fe-rich intermetallic 
phases can accumulate at the interface between the intermetallic par
ticle and the α-Al matrix, preventing dislocation movement. This situ
ation triggers stress concentration that supports particle cracking and 
crack nucleation [35]. Irregular structures, large pits and obvious 
microcracks were observed on the fracture surface of the AC 
Al–5Si–1Cu–Mg alloy (Fig. 6a). The fracture mechanism in the as-cast 
alloy is characterized by large pits and intermetallic phase compounds 
that facilitate the formation of larger secondary cracks. Internal stresses 
resulting from plastic deformation occur during fracture [36]. As a result 
of these internal stresses, the fracture path develops along interdendritic 
regions characterized by high-density Fe-rich intermetallic phases, 
where the damage process begins with particle cracking [27]. The in
crease in Si particle size and aspect ratio causes higher stress. The 
probability of fracture increases as a result of high stress. Brittle particle 
groups provide both high particle cracking rate and microcracks 
bonding during damage. This situation has been shown in previous 
studies that Fe-based intermetallics (Figs. 4 and 5), which are present in 
a large volume fraction, have a significant effect on the fracture of alloys 
[27]. After T6 heat treatment, most of the particles in the internal 
structure dissolve in the α-Al matrix phase. This reduces the impact on 
energy caused by the brittle structure of the particles. Due to the fibrous 
structure of the spheroidized particles (refer to Fig. 5a) during HT, the 
disintegration of intermetallic phases containing Fe reduces the possi
bility of crack formation along these particles [26].

3.2. Machinability characteristics of sand casted alloy

As shown in Fig. 7, thrust force (Fz), Ra and moment (Mz) values 
were determined when drilling AC and HTed alloys on a vertical 
machining center under constant V, f and DoC conditions. As a result of 
the solid solution and aging process, it was stated that the Ra, thrust 
force and moment values decreased by 25.99%, 11.31% and 11.63%, 

respectively. The phases in the microstructure play an important role on 
the machinability characteristics of alloys. After HT, these phases are 
called soluble and insoluble. Soluble phases consist of elements that 
dissolve in the α-Al matrix with the effect of HT and are located as soft 
particles. The other is called phases that cannot be dissolved by HT. 
Insoluble phases contain high amounts of Fe and contain harder and 
brittle particles compared to soluble phases. These particles have the 
potential to wear the cutting tool [37]. On the other hand, these particles 
can increase the formation of BUE in the cutting edge by sweeping the 
ductile α-Al phase. Heat treatment applied to Al–Si based materials in 
manufacturing is an important factor to improve the machining prop
erties in machining operations. At the same time, the hardness of the 
material is among the metallurgical variables in controlling the 
machining properties [23]. Unlike many other metals, these alloys 
generally improve their machinability as hardness increases. The vast 
majority of businesses in the automotive sector accept that a minimum 
hardness of 80 Brinell is a desirable value [38]. Precipitate hardening 
occurs in the dissolved phases due to the effect of HT during machining 
experiments. This situation facilitates fracture during drilling, acceler
ates the evacuation of the chip from the cutting zone and is thought to 
reduce thrust force and torque. With the easy evacuation of the chip, the 
scratch marks and surface roughness on the machined hole surface are 
minimized. After the drilling process, the microhardness of the 
machined surface and subsurface was determined as presented in Fig. 8. 
Here, a measurement range of 10–140 μm was used for distance from 
cutting edge. In the measurements, it was demonstrated that the 
microhardness values of heat-treated samples were relatively higher 
than as-cast samples. This is associated with the high macro hardness 
value due to the hardening of the solid precipitate formed in the 
microstructure by heat treatment [31,39]. It is thought that the grain 
size in the microstructure decreases due to the effect of heat resulting 

Fig. 6. SEM photographs for fracture surface (a) AC and (b) HTed.

Fig. 7. Fz, Mz and Ra relationship in machining of alloys.
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from deformation and friction at the tool-workpiece interface during 
cutting and, accordingly, the microhardness value on the machined 
surface increases. In general, it is known that high cutting temperature 
caused by the interaction between the cutting edge and the newly 
machined surface causes differences in microhardness values, which 
contributes to plastic deformation on the free surface of the workpiece 
[40].

At the end of the drilling process, subsurface images of the machined 
surface based on drilling direction in AC and HTed alloys are given in 
Fig. 9. In these images, Si particles are in contact with the cutting tool 
due to the friction between the cutting tool and the workpiece during 
machining. As a result of this contact, Si particles in the microstructure 
can be broken and sprinkled on the machined surface (fallout). As seen 
in Fig. 9, the fractures are quite obvious, and it is thought that the voids 
formed in the treated subsurface are caused by the dislocation of broken 
particles together with the ductile α-Al matrix phase. This can cause an 
increase in Ra [40]. It is seen that the treated subsurface structure of the 
heat-treated alloy is more stable and smoother than the as-cast alloy 
(Fig. 9b). This situation is thought to be due to the decrease in the 
elongation to fracture of the alloy with HT and the easy breakage of the 
chip. In other words, the alloy turns into a more brittle structure and 
fracture occurs more easily. Fracture may occur more easily and defects 
that may arise from the hard Si phase on the machined surface may 
occur less frequently than in the as-cast alloy.

The SEM image of the drills used in the drilling of alloys is shown in 
Fig. 10. It was observed that BUE formation in the cutting tool decreased 

in the drilling of heat-treated alloys (Fig. 10b). Low hardness and high 
ductility in Al-based alloys trigger BUE formation on the cutting edge. 
Heat treatment applied to the alloy increases the hardness of the ma
terial, reduces BUE in the cutting tool and can improve the machined 
surface quality [38]. In other words, the decrease in elongation to 
fracture due to heat treatment facilitates chip breaking and evacuation 
from the cutting zone. This improves the machined surface quality by 
reducing BUE, cutting force and surface roughness (refer to Fig. 7) [41,
42]. During cutting, BUL initially occurs with the extrusion of the ductile 
α-Al with a low melting point on the rake face of the cutting tool. As the 
cutting process continues, the elements with a high melting point 
(Al–Si–Cu–Mg residues) in the alloy are swept away by the impact of 
friction and compression forces (refer to Fig. 10-Spectrum A and B). This 
situation causes the transformation of BUL amount to BUE at the cutting 
edge. As a result of the welding of BUE to the cutting edge, the tool 
geometry is disrupted by breaking off the particles from the tool material 
during cutting. Disrupted tool geometry is an important phenomenon 
that increases the cutting force and surface roughness.

In the drilling of as-cast alloy, chip morphology was observed to be 
longer and more curved than heat-treated alloy (Fig. 11 (a)). It is 
thought that the low elongation to fracture measured in heat-treated 
alloy contributes to the formation of shorter and more broken chip 
(Fig. 11 (b)) by facilitating chip breakage during cutting compared to as- 
cast alloy [23]. Short and broken chip formation can be considered as a 
result of brittle fracture characteristics. Short chip formation is a desired 
event for ideal surface quality and occupational safety in machining 
operations.

4. Conclusions

In this study, SMM features of AC and HTed Al–Si–Cu–Mg alloys 
were comparatively investigated. Microstructural analyses showed that 
the alloy in the AC condition consisted of α-Al, eutectic Si and many 
plate and acicular β-Fe (β-Al5FeSi) and script-like π-Fe (π-Al8Mg3FeSi6) 
intermetallics rich in Fe. It was determined that these phases partially 
dissolved and aggregated with heat treatment, became spherical and 
that the β phase transformed into Ɵ (Al7FeCu2) phase after aging. Me
chanical tests revealed that heat treatment increased the hardness, yield 
and tensile durability of the material, whereas decreasing the elongation 
to fracture. In addition, it was determined that the fracture surfaces 
exhibited transgranular brittle fracture characteristics with heat treat
ment after the tensile test. In terms of machinability, it was found that 
the thrust force, moment, Ra and BUE formation reduced with HT and 
the machined subsurface microhardness values increased up to a certain 
depth. These findings indicate that HT significantly improves the per
formance, strength and machining features of Al–5Si–1Cu–Mg materials 
and increases the potential of these alloys in the automotive and 

Fig. 8. Microhardness values for machined subsurface of Al–5Si–1Cu–Mg alloy.

Fig. 9. Machined subsurface images in drilling of alloys, (a) AC alloy and (b) HTed material.
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MoS2 based nanofluid-MQL on tribological and machining characteristics in 
turning of AA 2024 T3 aluminum alloy. J Mater Res Technol 2021;15:1688–704. 
https://doi.org/10.1016/j.jmrt.2021.09.007.
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