
Vol.:(0123456789)

International Journal of Precision Engineering and Manufacturing-Green Technology 
https://doi.org/10.1007/s40684-024-00664-2

1 3

REGULAR PAPER

Online ISSN 2198-0810
Print ISSN 2288-6206

Machining‑Induced Damage and Corrosion Behavior of Monel‑400 
Alloy Under Cryogenic Cooling Conditions: A Sustainable Initiative

Ali Demirbaş1 · Uğur Köklü2,3 · Sezer Morkavuk2 · Khaled Giasin4 · Engin Kocaman5 · Murat Sarıkaya6,7 

Received: 27 May 2024 / Revised: 19 August 2024 / Accepted: 5 September 2024 
© The Author(s) 2024

Abstract
Monel-400 is a nickel-based heat-resistant superalloy (HRSA) that is primarily used in oil and marine applications. Machining 
Monel-400 alloy for marine applications usually involves drilling and milling operations for assembly purposes, which should 
meet the requirements to withstand use in salt-water environments (i.e. lower surface finish to reduce corrosion and lack of 
burrs for tight sealing between mating parts). However, drilling of Monel-400 alloy can be challenging due to its high strength 
and density, which induces thermal effects that can influence the surface and geometrical integrity of the holes. Consequently, 
the use of environmentally friendly cooling technologies, such as cryogenics, is an excellent alternative to mitigate these 
effects, something which has not been widely investigated in the open literature when drilling Monel-400 alloy. Therefore, 
the current study aims to investigate the machinability of Monel-400 alloy under dry and cryogenic cooling conditions. The 
effects of cutting parameters and the use of a cryogenic liquid nitrogen bath on the surface integrity and corrosion resistance 
of holes were evaluated. Additionally, cutting forces, chip formation, and corrosion performance were analyzed. The results 
showed that the cutting forces increased by up to 8% under cryogenic cooling. Under cryogenic conditions, reduced elastic 
deformation resulted in a smaller chip size. Both cutting conditions produced a smooth surface finish with a roughness value 
of less than 0.2 µm. Corrosion resistance was reduced under cryogenic conditions at spindle speed of 5000 rpm. The current 
work showcases that cryogenic cooling is recommended for drilling Monel-400 alloy used in marine applications, but care 
should be taken in employing optimal cutting parameters to mitigate any effects on corrosion resistance.

Keywords  Sustainable manufacturing · Green drilling · Monel-400 alloy · Cryogenic cooling · Thrust force · Surface 
integrity · Corrosion

1  Introduction

The modern manufacturing industry handles the produc-
tion of materials with properties that can meet the needs of 
various applications [1]. Nickel-based alloys are appealing 
to many industries due to properties such as high strength, 
resistance to high temperatures, and corrosion. These alloys 
are commonly used in the aerospace, defense, marine, and 
automotive industries, as well as in power generation, 
nuclear, pollution control, biomedical, and even musical 
instrument manufacturing [2–6]. Monel-400 alloy belongs 
to the nickel-copper alloy family, and has excellent corrosion 
resistance, high strength and toughness, and good proper-
ties at low temperatures [1, 7]. Owing to these properties, 
Monel-400 is widely used in many industries, especially in 
the automotive, marine, aerospace, nuclear, chemical, oil 
and gas refinery industries [1, 8, 9]. However, Monel-400 
alloy has a high density of 8.8 g/cm3 and a high melting 
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point of 1300–1350 °C [10], high heat resistance capacity, 
and high yield strength and toughness, making it a difficult-
to-cut material by conventional machining processes [8, 9]. 
Various challenges arise during its machining such as highly 
induced cutting temperatures and cutting forces, rapid tool 
wear, and built-up edge (BUE) formation, as well as low sur-
face quality [2, 8, 11]. To improve its machinability, various 
methods, such as hot-machining, photochemical machining, 
as well as cutting fluids have been employed [2]. Minimum 
quantity lubrication (MQL) utilizing eco-friendly nanoflu-
ids and cryogenic machining are commonly employed in 
green manufacturing to ensure effective lubrication and 
cooling, while simultaneously protecting the operator and 
preventing environmental contamination [12–15]. These 
environmentally friendly cooling and lubricating methods 
were applied by researchers during milling [16–24], turning 
[25–32], drilling [33–36] and grinding [37–45] operations 
of difficult-to-cut materials to improve their machinability.

Studies on the machinability of Monel-400 alloy have 
mainly focused on turning operations. In these studies, the 
effects of cutting parameters, workpiece temperatures, cut-
ting tool coatings and nano-added cutting fluids on the pro-
cess were investigated. It is reported that PVD-TiAlN coated 
tools showed good performance in terms of surface quality, 
nanoparticle-aided cutting fluid made significant contribu-
tions to tool wear behavior, and machinability improved as 
the workpiece temperature increased [1–5, 11]. Additionally, 
some researchers investigated plasma arc cutting and wire 
electrical discharge machining of Monel-400 [7–9, 46–48]. 
On the other hand, only a few studies are reported on the 
drilling of nickel-based superalloys, which found that they 
can be difficult to cut [49, 50], and these studies generally 
focused on Monel K500 rather than Monel 400. Jayaku-
mar et al. [51] experimentally investigated the drilling of 
Monel K-500 using different cutting parameters, cutting 
tool material, and coolant considering material removal rate 
and surface quality and reported that tool material and feed 
rate have a significant effect on outputs. Sanjay et al. [52] 
optimized the cutting parameters in drilling Monel K500 
alloy considering material removal rate, surface roughness, 
and tool wear using machine learning (ML) and artificial 
neural networks (ANN). Abdo et al. [53] investigated and 

optimized the influence of the heat annealing process on 
the drilling machinability of Monel-400, considering cut-
ting forces, surface roughness, and tool wear. In this study, 
the machinability behavior of the material heat treated at 
700 and 1000 degrees was compared with the machinabil-
ity behavior of the material at room temperature, and it was 
found that the thrust force and surface roughness decreased 
after heat treatment. When machining nickel-based alloys, 
due to low thermal conductivity, high strain hardening, and 
hot hardness, the heat generated during cutting cannot be 
removed sufficiently by the chip; thus, high temperatures 
occur in the cutting zone, which accelerates tool wear and 
poor surface quality, which leads to low machining effi-
ciency [50, 54–59]. For this reason, it is of great impor-
tance to effectively dissipate the heat generated during the 
machining of difficult-to-cut materials such as nickel-based 
alloys [12]. Cryogenic machining, one of the most effec-
tive methods for cooling the cutting zone, workpiece, and 
cutting tool using environmentally friendly coolants during 
machining [12, 60], is preferred by researchers, especially 
for many difficult-to-cut materials such as Inconel-718 [34, 
55, 61, 62], Nimonic alloys [63–66], Ti-6Al-4 V [67–70]. 
Although it is stated that cryogenic machining improves 
machinability in many materials, no study has been reported 
to date on the cryogenic machinability of Monel 400 alloy in 
drilling operations. Therefore, this work aims to fill this gap 
and investigate the machinability of Monel 400 alloy under 
a sustainable environment i.e., dry and cryogenic drilling 
conditions.

2 � Materials and Methods

Monel-400 alloy with a thickness of 4 mm was used in the 
experiments. The chemical and mechanical properties of the 
Monel-400 alloy are given in Table 1.

The drilling experiments were conducted on a Quaser 
MV154C 3-axis vertical machining center under dry and 
cryogenic cutting conditions. The spindle speeds were set 
at 2500 and 5000 rpm, and the feed rates were varying 
between 100, 200, 300, 400, and 500 mm/min, as illustrated 

Table 1   Chemical and mechanical properties of Monel-400 alloy

Chemical composition in mass %

C Cu Fe Mn Ni S Si

Max 0.3 28–34 Max 2.5 Max 2 Min 63 Max 0.024 Max 0.5

Mechanical properties

Tensile stress (MPa) Yield strength (MPa) Elongation (%) Density (g/cc)

550 240 48 8.8



International Journal of Precision Engineering and Manufacturing-Green Technology	

1 3

in Table 2. A total of 60 experiments were conducted, with 
each experiment consisting of three repetitions.

The thrust force and torque during drilling were meas-
ured using KISTLER equipment (9257B force dynamom-
eter, 5070 A amplifier, 5697 A data acquisition system) and 
DynoWare software. All drilling tests were carried out using 
a thermally insulated fixture that is placed on the top of the 
dynamometer, as shown in Fig. 1a. During cryogenic tests, 
the material was completely immersed in the liquid nitro-
gen (− 196 °C) bath. Solid carbide (WPC DIN 6537 series) 
helical drills with 8 mm diameter and 140° point angle 
were used as shown in Fig. 1b. The burrs at the hole exits, 
bore-hole surfaces and chips were inspected with Keyence 
VHX-900F digital microscope as presented in Fig. 1c. The 

Table 2   Cutting parameters used in the experiments

Parameters Level 1 Level 2 Level 3 Level 4 Level 5

Cooling environ-
ment

Dry Cryogenic – – –

Spindle speed (rpm) 2500 5000 – – –
Feed rate (mm/min) 100 200 300 400 500

Fig. 1   Experimental set-up and 
measurement equipment
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holes were further cut from their axes and the roughness and 
topography of the bore-hole surface were investigated with a 
Zygo Zegage optical profilometer (See Fig. 1d). Tests were 
also performed to investigate the effect of cutting parameters 
on the corrosion resistance of the machined surfaces using 
the Gamry 1010 E Potentiotate/Galvanostat as provided in 
Fig. 1e. In the corrosion tests, only the non-machined sur-
faces of the samples were isolated and working electrodes 
were prepared. All tests were carried out in 250 ml of 0.5 M 
NaCl solution. A potential range of − 0.5 to + 1.5 V and a 
scanning rate of 1 mV/sec were selected as test parameters. 
During the corrosion tests, a saturated calomel electrode was 
used as the reference electrode and a graphite electrode as 
a counter electrode. Tafel curves were obtained by poten-
tiodynamic polarization method and Tafel parameters were 
extracted from the curves using Gamry-Echem computer 
software.

3 � Results and Discussion

3.1 � Cutting Forces Analysis

The effect of cutting parameters (spindle speed and feed 
rate) on thrust force and torque under dry and cryogenic 
conditions is given in Fig. 2a and b, respectively. Accord-
ing to Fig. 2a, increasing the spindle speed decreased cut-
ting forces while increasing the feed rate increased cutting 
forces. At 2500 and 5000 rpm, the maximum thrust force 
generated at 500 mm/min feed rate and cryogenic condi-
tions (1124 N and 642 N, respectively). The thrust force 
generated under cryogenic conditions is ~ 8% higher than 
those under dry cutting. Figure 2b shows that, in general, 

the torque increased with increasing feed rate and decreased 
with increasing spindle speed. However, in cryogenic cutting 
conditions, severe fluctuations occurred, especially at low 
spindle speed (2500 rpm) were observed. The highest torque 
was measured at 500 mm/min feed rate under cryogenic 
conditions. The torque in all cryogenic cutting conditions 
was higher than that in dry cutting conditions. In previous 
studies, it was reported that, compared to dry machining, 
higher thrust force and torque are generated when drilling 
magnesium alloy [71], and fiber-reinforced plastics [72–74] 
using the cryogenic immersion approach, which is the cryo-
genic machining method used in this study. Some research-
ers [34, 36, 75] also noted that higher cutting forces occur 
when Inconel 718 is drilled under liquid nitrogen spraying 
method. Higher force generation in cryogenic machining 
can be explained in general terms by the fact that the hard-
ness of the workpiece increases due to the extremely low 
boiling temperature of liquid nitrogen, resulting in greater 
resistance to plastic deformation [36, 75].

3.2 � Chip Formation and Burr Analysis

Chip formation in the drilling process varies depending on 
many factors. These are workpiece material, cutting tool 
material, coating, geometry, point angle, use of coolant, cut-
ting parameters, drilling strategies, etc. The chip morphol-
ogy is one of the most common methods used to understand 
the deformation that occurs during metal cutting [76]. The 
chips were collected and examined with a digital micro-
scope (Keyence VHX-900F) and SEM following the drill-
ing experiments. Images of the chips under different cutting 
parameters are shown in Figs. 3 and 4 for dry and cryogenic 
conditions. It can be said that both cutting parameters and 
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Fig. 3   Chip formation under dry and cryogenic cutting conditions (macroscopic view)

Fig. 4   Chip formation under dry and cryogenic cutting conditions (microscopic view)
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cutting conditions (dry and cryogenic) had a direct effect 
on chip formation. Long helical chips were formed at low 
spindle speeds and low feed rates (300 mm/min) under dry 
conditions, as shown in Fig. 3, while the chip type changed 
from helical to ribbon as the feed rate increased. Snarled 
helical chips were formed at a low feed rate with increased 
deformation as spindle speed increased. As the feed rate 
increased, the chip type changed to long helical, and as the 
feed rate increased further, the chip type changed to short 
helical. In addition, under high spindle speed and feed rate, 
it was observed that chip segmentation occurs due to higher 
plastic deformation, depending on the effect of increasing 
temperature in the cutting zone. On the other hand, under 
cryogenic conditions, chips similar to those formed under 
dry conditions were formed by a combination of low spin-
dle speed and feed rate. However, increasing the feed rate 
reduced chip size and formed elemental chips.

As previously highlighted in the literature, as the feed rate 
increases, the contact length between the chip and the tool 
increases, and this phenomenon affects the heat generation 
in the secondary deformation zone [17, 77]. For this reason, 
it can be said that the main effect of using cryogenic coolant 
becomes more evident at higher feed rates. When Figs. 3 
and 4 are compared, the length of the chips obtained from 
cryogenic tests is shorter. The cryogenic temperatures of 
liquid nitrogen bath counteract the high cutting temperatures 
generated at the cutting zone, which limits elastic deforma-
tions and improves chip breakability.

During drilling, burrs may form on the hole edges at both 
the hole entrance and the hole exit, but the burrs at the hole 
exit are generally larger. Burrs affect dimensional accuracy, 
cause stress concentration and may also negatively affect 
fatigue and corrosion behavior. Burr size and shape may 
vary depending on the workpiece material, cutting param-
eters and therefore cutting forces and chip formation. Typi-
cally, three are three types of burr shapes: uniform, transient, 
and crown. A uniform burr usually starts with a fracture in 
the hole center due to the stress applied to the material by the 
tool and as the tool progressed, plastic deformation expands 
towards the hole edges and a uniform burr is formed with a 
second fracture. This type of burr is usually small in size and 
can be easily removed. In the second type of burr, transient, 
fracture occurs simultaneously at the hole center and edges. 
Therefore, the shape is between uniform and crown. Lastly, 
due to high plastic deformation, crown burrs are formed in 
large sizes and irregular geometry at the hole edges [78, 79].

The burrs formed at the hole exit were analyzed using a 
digital microscope, as shown in Fig. 5. In general, no severe 
burr formation was observed at the hole exits. However, 
slightly more burrs were formed in holes machined under 
dry-cutting conditions than under cryogenic conditions. It 
can also be seen that burr formation increased with increas-
ing the feed rate. Finally, drilling at a lower spindle speed 

(2500 rpm) resulted in higher burr formation compared to 
spindle speeds of 5000 rpm. Based on the information in the 
literature, it is seen that plastic deformation plays an impor-
tant role in burr formation. It was also stated that uniform 
burr formation is observed at low cutting speeds and feed 
rates whereas crown burr formation is observed at high cut-
ting speeds and feed rates and burr size increased depending 
on the feed rate when the spindle speed was high [78, 80]. 
Nevertheless, it is suggested that the material plastic defor-
mation due to drilling exhibits an increasing brittle behavior, 
which consequently alters the formation of burrs.

3.3 � Surface Roughness and Borehole Texture 
Analysis

The holes drilled under dry cutting were cross-sectioned 
from their center to examine the borehole surface qual-
ity using a digital microscope and optical profilometer 
(Fig. 6). The surface roughness of each hole was measured 
and reported, as shown in Fig. 7. The surface roughness 
(Ra) ranged between 0.1 and 0.2 µm which indicates a very 
smooth surface finish. The results show that cryogenic bath 
is more effective when drilling at higher spindle speeds, 
where higher temperatures are expected at the cutting zone. 
In general, the reduction in surface roughness (Ra) using 
cryogenic bath cooling ranged between 15–40% in compari-
son to dry conditions. However, at lower spindle speeds, 
the surface roughness fluctuated depending on the feed rate. 

At 2500 rpm spindle speed and all feed rates under dry 
cutting conditions, macro-sized tool marks were observed 
on the borehole's surface. The marks on the surface were 
relatively reduced at 5000 rpm. Surface defects increased 
with increasing the feed rate. Tests performed at 2500 rpm 
spindle speed under dry cutting conditions show that it is not 
possible to use the surfaces without a second borehole fin-
ishing process. When all the experiments performed under 
dry conditions are evaluated, it can be said that the borehole 
surface formed in the experiment performed at 5000 rpm 
spindle speed and 100 mm/min feed rate is significantly 
better than the other holes. As a result, under dry-cutting 
conditions, a higher spindle speed and a lower feed rate 
improved the borehole surface quality. The cross-sectional 
view of the inner surfaces of the holes drilled under cryo-
genic conditions is given in Fig. 8. The use of cryogenic 
cooling helped eliminate the tool marks on the inner surface 
of the hole, which were observed during dry-cutting. Under 
cryogenic cutting conditions, the surface finish of all holes 
was generally the same. The surfaces of the boreholes sus-
tained macroscale damage. Similar to what was observed 
under dry cutting conditions, increasing the spindle speed 
and decreasing the feed rate under cryogenic conditions also 
resulted in relatively smoother and cleaner surfaces. Some 
chip debris adhered to the hole surfaces under cryogenic 
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conditions due to difficulty in chip evacuation as the holes 
were fully submerged in liquid nitrogen. Such debris could 
be responsible for the fluctuations in the surface roughness 
readings. Although it affected the roughness values, less 
plastic deformation and tool mark formation under cryogenic 
conditions provided better surface quality.

3.4 � Corrosion Analysis

In Fig. 9, the Tafel curves obtained as a result of the poten-
tiodynamic polarization tests performed on the machined 
surfaces after drilling are given. It is understood that drilling 

performed under dry conditions causes minor changes in 
the Tafel curves of Monel 400 alloy. By extrapolating Tafel 
curves, corrosion potential and corrosion current density can 
be obtained. Corrosion potential can be defined as the abil-
ity of the metal surface to lose electrons in an electrolyte 
liquid [81]. Also, corrosion potential is a measure of the 
tendency of the surface to corrosion. According to the Tafel 
parameters given in Table 3, no linear change was observed 
in the corrosion potentials by increasing the feed rate from 
100 mm/min to 500 mm/min in the tests carried out at 
2500 rpm under dry conditions. However, it is observed that 
there is a shift in the corrosion potentials to the positive side 

Fig. 5   Hole exit images



	 International Journal of Precision Engineering and Manufacturing-Green Technology

1 3

with increasing feed rate. On the other hand, the corrosion 
current density, which is an important parameter used in 
the evaluation of the electrochemical behavior of material 
[82, 83], decreases with increasing feed rate; that is, the 
corrosion resistance increases. In the corrosion tests car-
ried out under dry conditions, at the same feed rates and by 
increasing the spindle speed to 5000 rpm, no linear change 
was also observed in the corrosion potential values. Cur-
rent density values first decreased and then showed a slight 
increase at the 5000-rpm. In general, corrosion resistance 
increased with increasing spindle speed for the same feed 
rates in dry conditions. 

In Fig. 9b, it is seen that drilling under cryogenic condi-
tions causes more changes in Tafel curves than experiments 
performed under dry conditions. According to the Tafel test 
parameters given in Table 3, the corrosion potential value 
did not show a linear change with the increasing feed rate 
in the tests performed at 2500 rpm spindle speed, but the 
current density increased. In other words, corrosion resist-
ance decreased with increasing feed rate. By increasing the 
feed rate from 100 mm/min to 500 mm/min, the corrosion 
current density value increased, that is, the corrosion resist-
ance decreased. However, in the corrosion test of the sample 
drilled at 300 mm/min feed rate under cryogenic conditions, 
it was the material with the highest corrosion resistance 
among the samples drilled at 5000 rpm. In the tests carried 
out by increasing the spindle speed to 5000 rpm, the feed 

rate did not cause a linear change in either the corrosion 
potential or the corrosion current density, depending on the 
change of machining parameters.

Within the scope of experimental studies, it was deter-
mined that changing drilling parameters had an effect on 
corrosion after drilling under both dry and cryogenic con-
ditions. However, no significant relationship was found 
between the corrosion test results and drilling parameters. 
Overall, it can be stated that drilling at high speeds and in 
dry conditions increases the corrosion resistance of the 
machined surface. A similar result was previously reported 
by Reddy et al. [84] who found that the feed rate increased 
the surface roughness which in return increased corrosion.

In general, the corrosion test results are directly related 
to the surface condition and are expected to be correlated 
with the roughness values measured on the surfaces after 
drilling. However, in this study, no correlation was found 
between the roughness values measured on the surfaces after 
drilling and corrosion. Corrosion is closely related to some 
microstructural factors such as phases in the microstructure, 
distribution, friction and grain size of phases [85–87]. Also, 
the corrosion is directly related to the surface of the material, 
the surface topography has great importance in the relation-
ship of drilling parameters with corrosion. As can be seen 
in Fig. 10, it is understood that the surface roughness in 
the surface topography of the hole is not similar through-
out the entire surface and the roughness values increase 

s: 2500 rpm s: 5000 rpm

f: 100 mm/min f: 300 mm/min f: 500 mm/min f: 100 mm/min f: 300 mm/min f: 500 mm/min

Fig. 6   Borehole imaging of tests performed under dry conditions
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and decrease locally. This situation increases the possibil-
ity of some areas dissolving faster and more preferentially 
than others in terms of corrosion. It is also understood from 
the surface images that craters are formed in some regions 
due to the drilling process on the surface. Such regions can 
induce pitting and cause various fluctuations in Tafel curves. 
In addition, Ni-Cu alloys are alloys with a tendency to pas-
sivation, as can be seen from the Tafel curves. During cor-
rosion, traces of Ni and Cu elements containing chlorine 
and oxide are expected to form on the surface. This is seen 
in the EDS mapping (Fig. 10a), SEM (Fig. 10b), and EDS 
images of the sample which was drilled at 100 mm/min and 
2500 rpm parameters under dry conditions.

It is known that this passivation after corrosion slows 
down the corrosion rate [88]. According to the SEM images 
taken after the corrosion test and shown in Fig. 11, it can 
be seen that there is an accumulation of corrosion products, 

such as oxides and chlorides of Cu, Ni and Al elements, on 
the surfaces [89]. However, in some areas, it is observed 
that the passive layer on the surface is peeled off and crack 
formation occurs at the bottom. Pitting formation is also 
observed in some regions. It indicates that corrosion may 
have been accelerated as a result of the different surface 
finishes that occurred after the drilling process in the surface 
topography. Also, this may cause fluctuations in corrosion 
test parameters.

4 � Conclusions

The current study investigates the drilling performance of 
Monel 400 alloy under dry and cryogenic cooling condi-
tions. The aim is to evaluate the effect of cutting parameters 
(spindle speed and feed rate) and the use of a cryogenic 
bath cooling environment on the resulting cutting forces 
(thrust force and torque), chip formation, burr formation at 
the hole exit, and surface integrity. In addition, corrosion 
tests were performed to further assess the surface integrity 
of the machined holes. From the experimental results, the 
following can be concluded:

•	 The thrust force under cryogenic conditions was up to 8% 
higher than that under dry conditions due to increased 
resistance against plastic deformation during the drilling 
process.

•	 The chip size under cryogenic conditions was relatively 
smaller than that produced under dry conditions due to 
the increased brittleness of the workpiece, which in turn 
improved chip breakability during the drilling process.

•	 The surface roughness of machined holes did not exceed 
0.2 µm and was reduced up to 40% under cryogenic con-
ditions. However, at lower spindle speed, the surface 
quality under dry conditions was relatively better and 
free from feed and chip micro-damage marks.

•	 The cutting parameters do not have a linear effect on cor-
rosion. Only in the drilling tests performed at 2500 rpm 
under dry conditions, did the corrosion current density 
decrease with increasing feed rate. Also, the corrosion 
resistance increased with increasing spindle speed for 
the same feed rates in dry conditions. The lowest corro-
sion rate was obtained at a feed rate of 300 mm/min and 
a spindle speed of 5000 rpm under dry conditions.

•	 Corrosion current density decreased with increasing feed 
rate in tests performed at 2500 rpm in cryogenic condi-
tions. However, no linear change was observed depend-
ing on the feed rate in the tests performed at 5000 rpm in 
cryogenic conditions. Also, under cryogenic conditions, 
increasing the spindle speed from 2500 to 5000 rpm 
negatively affected the corrosion resistance.
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•	 Despite an increase in thrust force under cryogenic con-
ditions, positive effects were observed with regard to 
other machinability characteristics, including improve-

ments in hole quality and chip formation. Furthermore, 
future studies could investigate the drilling machinabil-
ity of Monel 400 using MQL and conventional cool-

s: 2500 rpm s: 5000 rpm

f: 100 mm/min f: 300 mm/min f: 500 mm/min f: 100 mm/min f: 300 mm/min f: 500 mm/min

Fig. 8   Borehole condition under cryogenic conditions

Fig. 9   Tafel curves a dry and b cryogenic drilling
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Table 3   Corrosion test 
parameters (dry and cryogenic 
drilling)

Sample Dry Cryogenic

Ecor (mV) Icor (µA/cm2) Ecor (mV) Icor (µA/cm2)

2500 rpm, 100 mm/min – 194.318 0.487 – 115.69 0.16
2500 rpm, 300 mm/min – 110.651 0.259 – 244.4 0.324
2500 rpm, 500 mm/min – 121.323 0.146 – 210.651 0.395
5000 rpm, 100 mm/min – 133.776 0.187 – 339.683 2.35
5000 rpm, 300 mm/min – 143.567 0.086 – 194.07 0.51
5000 rpm, 500 mm/min – 104.689 0.088 – 596.452 5

ClCu NaNi O

(b(a

Point 1 Point 2 Point 3

Fig. 10   Corroded surface of 100 mm/min—2500 rpm (dry drilling)
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ing methods, as well as alternative coolants, and their 
impact on tool life.
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