• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-sensor data fusion based on the similarity measure and belief (Deng) entropy under neutrosophic evidence sets

Göster/Aç

Full Text / Tam Metin (1.524Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2025

Yazar

Köseoğlu, Ali
Şahin, Rıdvan
Demir, Ümit

Üst veri

Tüm öğe kaydını göster

Künye

Köseoğlu, A., Şahin, R., & Demir, Ü. (2025). Multi-sensor data fusion based on the similarity measure and belief (Deng) entropy under neutrosophic evidence sets. AIMS Mathematics, 10(5), 10471–10503. https://doi.org/10.3934/math.2025477

Özet

The Dempster–Shafer evidence theory is a very practical concept for handling uncertain information. The foundation of this theory lies in the basic probability assignment (BPA), which exclusively accounts for the degree of support attributed to focal elements (FEs). In this study, neutrosophic evidence sets (NESs) are defined to introduce additional probabilistic measures, aimed at addressing the uncertainty, imprecision, incompleteness, and inconsistency present in real-world information. The basic element of NESs is a neutrosophic basic probability assignment (NBPA), which consists of three components. The truth degree of FEs is represented by the first BPA, the second BPA represents the indeterminacy degree of FEs, and the last BPA characterizes the falsity degree of FEs. In NESs, each support degree of FEs is shown separately without any limitation. Therefore, the general concept of NESs is broader compared to traditional evidence sets and intuitionistic fuzzy evidence sets. Unlike the neutrosophic set (NS), the NBPA method assigns truth-support, uncertainty-support, and false-support degrees, as well as these support degrees, to single and multiple subsets in a discriminative framework. This paper aimed to develop some information measures for NESs, such as neutrosophic Deng entropy (NDE), neutrosophic cosine similarity measure, and neutrosophic Jousselme distance. Then, an improved method based on NDE and neutrosophic cosine similarity measure was established to combine contradictory evidence to increase the influence of reliable evidence on the one hand and to reduce the influence of unreliable evidence on the other hand. Finally, a case involving sensor data integration for target identification was studied to highlight the importance of these innovative ideas. The numerical example demonstrates that the proposed method provides more reliable and superior fusion performance compared to classical models, particularly in scenarios involving high conflict and uncertain information. However, the effectiveness of the method is partially influenced by the structure of the similarity matrix and the entropy parameters, which necessitates careful parameter tuning to achieve optimal results. These limitations are explicitly highlighted to serve as a guide for future improvements and broader applications of the method.

Kaynak

AIMS Mathematics

Cilt

10

Sayı

5

Bağlantı

https://doi.org/10.3934/math.2025477
https://hdl.handle.net/11436/10425

Koleksiyonlar

  • FEF, Matematik Bölümü Koleksiyonu [160]
  • Scopus İndeksli Yayınlar Koleksiyonu [5990]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.