Basit öğe kaydını göster

dc.contributor.authorYelgel, Övgü Ceyda
dc.contributor.authorYelgel, Celal
dc.date.accessioned2025-08-06T12:21:31Z
dc.date.available2025-08-06T12:21:31Z
dc.date.issued2025en_US
dc.identifier.citationYelgel, Ö. C., & Yelgel, C. (2025). A review of machine learning approaches for the discovery of thermoelectric materials. Advances in Physics: X, 10(1). https://doi.org/10.1080/23746149.2025.2536269en_US
dc.identifier.issn2374-6149
dc.identifier.urihttps://doi.org/10.1080/23746149.2025.2536269
dc.identifier.urihttps://hdl.handle.net/11436/10827
dc.description.abstractThermoelectric (TE) materials have garnered significant interest due to their capacity to convert heat directly into electrical energy and vice versa, offering a sustainable route for energy harvesting and waste heat recovery. Nevertheless, many of the high-performance TE materials reported to date rely on elements that are scarce, costly, or environmentally hazardous, thereby limiting their large-scale deployment. To overcome these challenges, the development of efficient, earth-abundant, and environmentally benign alternatives is essential. Although first-principles methods provide valuable insights into the transport behavior of potential TE materials, their high computational cost restricts their utility in large-scale material screening. Recent progress in computational infrastructure, along with the advent of data-centric approaches such as machine learning (ML), has transformed the landscape of thermoelectric research. ML algorithms, trained on comprehensive datasets including experimental measurements, crystallographic data, and density functional theory (DFT) results can predict key TE metrics, such as the figure of merit (ZT), with remarkable speed and accuracy. This review explores the integration of ML into TE materials discovery, emphasizing its role in property prediction, descriptor engineering, and structural optimization. A systematic examination of ML-driven strategies promises to accelerate the discovery process and improve the efficiency of next-generation thermoelectric systems.en_US
dc.language.isoengen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectMachine learningen_US
dc.subjectMaterials discoveryen_US
dc.subjectThermoelectric efficiencyen_US
dc.subjectThermoelectric figure of meriten_US
dc.subjectThermoelectric materialsen_US
dc.titleA review of machine learning approaches for the discovery of thermoelectric materialsen_US
dc.typereviewen_US
dc.contributor.departmentRTEÜ, Mühendislik ve Mimarlık Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.contributor.institutionauthorYelgel, Övgü Ceyda
dc.contributor.institutionauthorYelgel, Celal
dc.identifier.doi10.1080/23746149.2025.2536269en_US
dc.identifier.volume10en_US
dc.identifier.issue1en_US
dc.identifier.startpage2536269en_US
dc.relation.journalAdvances in Physics: Xen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster