Basit öğe kaydını göster

dc.contributor.authorLi, Jian
dc.contributor.authorBai, Jinwen
dc.contributor.authorFeng, Guorui
dc.contributor.authorYılmaz, Erol
dc.contributor.authorHan, Yanna
dc.contributor.authorWang, Zhe
dc.contributor.authorWang, Shanyong
dc.contributor.authorWu, Guowei
dc.date.accessioned2025-08-08T10:58:21Z
dc.date.available2025-08-08T10:58:21Z
dc.date.issued2025en_US
dc.identifier.citationLi, J., Bai, J., Feng, G., Yilmaz, E., Han, Y., Wang, Z., Wang, S., & Wu, G. (2025). Degradation mechanism of coal pillars in an underground coal gasification environment: Bearing capacity, pyrolysis behaviour and pore structure. International Journal of Mining Science and Technology, 35(6), 897-912. https://doi.org/10.1016/j.ijmst.2025.05.002en_US
dc.identifier.issn2212-6066
dc.identifier.urihttps://doi.org/10.1016/j.ijmst.2025.05.002
dc.identifier.uri2095-2686
dc.identifier.urihttps://hdl.handle.net/11436/10834
dc.description.abstractCoal pillars are critical supporting structures between underground coal gasification gasifiers. Its bearing capacity and structural stability are severely threatened by high-temperature environments. To elucidate the high-temperature deterioration mechanism of coal pillars at multiple scales, coal strength features as a function of temperature were investigated via uniaxial compression and acoustic emission equipment. The pyrolysis reaction process and microstructure evolution were characterized via X-ray diffractometer (XRD), scanning electron microscope (SEM), thermogravimetric (TG), Fourier transform infrared spectroscopy (FTIR), and computed tomography (CT) tests. Experimental results reveal a critical temperature threshold of 500 degrees C for severe degradation of the coal bearing capacity. Specifically, both the strength and elastic modulus exhibit accelerated degradation above this temperature, with maximum reductions of 45.53% and 61.34%, respectively. Above 500 degrees C, coal essentially undergoes a pyrolysis reaction under N2 and CO2 atmospheres. High temperatures decrease the quantity of O2-based functional groups, growing aromaticity and the degree of graphitization. These changes induce dislocation and slip inside the coal crystal nucleus and then lead to deformation of the coal molecular structural units and strain energy generation. This process results in a great increase in porosity. Consequently, the stress deformation of coal increases, transforming the type of failure from brittle to ductile failure. These findings are expected to provide scientific support for UCG rock strata control. (c) 2025 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectThermal damageen_US
dc.subjectCoal pillaren_US
dc.subjectBearing characteristicsen_US
dc.subjectPyrolysisen_US
dc.subjectUnderground coal gasificationen_US
dc.titleDegradation mechanism of coal pillars in an underground coal gasification environment: Bearing capacity, pyrolysis behaviour and pore structureen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Mühendislik ve Mimarlık Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.contributor.institutionauthorYılmaz, Erol
dc.identifier.doi10.1016/j.ijmst.2025.05.002en_US
dc.identifier.volume35en_US
dc.identifier.issue6en_US
dc.identifier.startpage897en_US
dc.identifier.endpage912en_US
dc.relation.journalInternational Journal of Mining Science and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster