• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Olfaction recognition by EEG analysis using wavelet transform features

Thumbnail

Göster/Aç

Full Text / Tam Metin (517.6Kb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2016

Yazar

Yavuz, Ebru
Aydemir, Önder

Üst veri

Tüm öğe kaydını göster

Künye

Yavuz, E., Aydemir, O. (2016). Olfaction recognition by EEG analysis using wavelet transform features. Proceedings of the 2016 International Symposium on Innovations in Intelligent Systems and Applications (Inista),

Özet

The responses of the brain into different information coming from sense organs could be analyzed by various kinds of measuring techniques. Among the existing techniques, Electroencephalography (EEG) is widely used because of its low setup costs, easy implementation and noninvasive nature. the response of the human brain to olfaction has been analyzed in recent years. Particularly, it has not been exactly proved how the human brain gives response to different odors because of the limited kind of odor usage and different kinds of proposed methods. the present study demonstrates the effect of lotus flower and cheese odors on EEG signals, which were recorded from 5 healthy subjects at the eyes open and eyes closed conditions. in order to show the effectiveness of the proposed method, we categorized the EEG trials into two classes between lotus flower and cheese odors. in order to represent the EEG trials, we extracted features by using Wavelet Transform coefficients. As wavelet function, we tested five kinds of wavelets including Morlet, Mexican, Meyer, Coiflet and Daubechies on delta, theta, alpha, beta, whole band of the EEG signal. the extracted features were classified by k-nearest neighbor algorithm. the achieved results showed that among the tested wavelet functions, Mexican wavelet has a great potential to represent the EEG signals which were recorded during smelling of lotus flower and cheese odors under the eyes open and eyes closed conditions. Moreover, we achieved with Mexican 98.29% and 94.08% average classification accuracy rates on the eyes open and closed conditions, respectively.

Kaynak

Proceedings of the 2016 International Symposium on Innovations in Intelligent Systems and Applications (Inista)

Bağlantı

https://hdl.handle.net/11436/2646

Koleksiyonlar

  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [197]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.