Basit öğe kaydını göster

dc.contributor.authorHuang, Zhiqiang
dc.contributor.authorYılmaz, Erol
dc.contributor.authorCao, Shua
dc.date.accessioned2022-09-12T11:03:43Z
dc.date.available2022-09-12T11:03:43Z
dc.date.issued2021en_US
dc.identifier.citationHuang, Z., Yilmaz, E. & Cao, S. (2021). Analysis of Strength and Microstructural Characteristics of Mine Backfills Containing Fly Ash and Desulfurized Gypsum. Minerals, 11(4), 409. https://doi.org/10.3390/min11040409en_US
dc.identifier.issn2075-163X
dc.identifier.urihttps://doi.org/10.3390/min11040409
dc.identifier.urihttps://hdl.handle.net/11436/6439
dc.description.abstractThe utilization of solid wastes (SWs) as a potential resource for backfilling is not only conducive to environmental protection but also reduces the surface storage of waste. Two types of SWs, including fly ash (FA) and desulfurized gypsum (DG), were used to prepare cementitious backfilling materials for underground mined-out areas. Ordinary Portland cement (OPC) was used as cement in mine backfill. To better investigate the feasibility of preparing backfill materials, some laboratory tests, such as uniaxial compressive strength (UCS), scanning electron microscopy (SEM), and energy dissipation theory, were conducted to explore both strength and microstructural properties of backfilling. Results have demonstrated that the main components of FA and DG in this study are oxides, with few toxic and heavy metal components. The ideal ratio of OPC:FA:DG is 1:6:2 and the corresponding UCS values are 2.5 and 4.2 MPa when the curing time are 7 days and 14 days, respectively. Moreover, the average UCS value of backfilling samples gradually decreased when the proportion of DG in the mixture increased. The main failure modes of various backfilling materials are tensile and shearing cracks. In addition, the corresponding relations among total input energy, dissipated energy and strain energy, and stress-strain curve were investigated. The spatial distribution of oxygen, aluminum, silicon, calcium, iron and magnesium elements, and hydration product are explored from the microstructure's perspective. The findings of this study provide both invaluable information and industrial applications for the efficient management of solid waste, based on sustainable development and circular economy.en_US
dc.description.sponsorshipNational Natural Science Foundation of China (NSFC) 51804017 Fundamental Research Funds for the Central Universities FRF-TP-20-001A2en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSolid wasteen_US
dc.subjectSustainable waste managementen_US
dc.subjectStrength characteristicsen_US
dc.subjectMicrostructural analysisen_US
dc.subjectBackfilling materialsen_US
dc.titleAnalysis of strength and microstructural characteristics of mine backfills containing fly ash and desulfurized gypsumen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Mühendislik ve Mimarlık Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.contributor.institutionauthorYılmaz, Erol
dc.identifier.doi10.3390/min11040409en_US
dc.identifier.volume11en_US
dc.identifier.issue4en_US
dc.identifier.startpage406en_US
dc.relation.journalMineralsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster