• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transcriptional insights into Cu related tolerance strategies in maize linked to a novel tea-biochar

Thumbnail

View/Open

Full Text / Tam Metin (6.305Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2021

Author

Pehlivan, Necla
Wang, Jim J.

Metadata

Show full item record

Citation

Pehlivan, N. & Wang, J.J. (2021). Transcriptional insights into Cu related tolerance strategies in maize linked to a novel tea-biochar. Environmental Pollution, 293, 118500. https://doi.org/10.1016/j.envpol.2021.118500

Abstract

One-third of maize cultivation in Turkey has been performed in nutrient-rich soils of the coastal agricultural lands of the Black Sea Region, which is among the country's granaries. However, the yield of this chief crop is affected by Cu toxicity due to a decades-long abandoned opencast Cu-mine. As part of the modern agenda, against this problem, we valorized one of the region's signature plant waste by synthesizing a tea-derived biochar (BC) and evaluated for remediation effect on maize Cu tolerance. Among other rates (0%, 0.4%, 0.8%, 1.6%), maximum Cu absorption (168.27 mg kg-1) was found in the 5%BC in in-vitro spiking experiments where natural Cu contamination levels were mimicked. Obvious increasing trends in both root and shoot tissues of maize plantlets growing in Cu-spiked soil (260.26 +/- 5.19 mg Cu kgxfffd; 1) were recorded with proportionally increasing BC application rates. The black tea waste-BC (5%) amendment remarkably reduced the Cu uptake from Cu spikedsoil and showed no phenotypic retardation in maize. Accordingly, it boosted the metabolic and transcriptomic profile owing to up-regulation in the aquaporin and defense genes (PIP1;5 and POD1) by 1.31 and 1.6 fold. The tea-BC application also improved the soil-plant water relations by minimizing cytosolic volume changes between 85 and 90%, increasing chlorophyll intactness (65%) and membrane stability up to 41%. The tea-BC could be a strong agent with potential agronomic benefits in the remediation of the cationic Cu toxicity that occurred in the mining-contaminated agricultural soils.

Source

Environmental Pollution

Volume

293

URI

https://doi.org/10.1016/j.envpol.2021.118500
https://hdl.handle.net/11436/6613

Collections

  • FEF, Biyoloji Bölümü Koleksiyonu [589]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [5990]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.