• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessment of different solution methods for receding contact problems in functionally graded layered mediums

Thumbnail

View/Open

Full Text / Tam Metin (8.821Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2021

Author

Yaylacı, Murat
Eyüboğlu, Ayşegül
Adıyaman, Gökhan
Yaylacı, Ecren Uzun
Öner, Erdal
Birinci, Ahmet

Metadata

Show full item record

Citation

Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E.U., Oner, E. & Birinci, A. (2021). Assessment of different solution methods for receding contact problems in functionally graded layered mediums. Mechanics of Materials, 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730

Abstract

This paper presents a comparative study of different methods, such as the analytical method, finite element method (FEM), and multilayer perceptron (MLP) for analyzing a frictionless receding contact problem. The problem consists of two layers resting on a Winkler foundation. The top layer is functionally graded (FG) along the depth and pressed using a rigid cylindrical stamp, whereas the bottom layer is homogeneous. We assumed that the contact between the two layers, and that between the FG layer and the rigid cylindrical stamp are frictionless; additionally, compressive normal tractions can be transmitted through the interface. First, the problem was solved analytically using the theory of elasticity and integral transform techniques. Second, the finite element solution of the problem was obtained using ANSYS software. Finally, the problem was extended based on the MLP, which an artificial neural network used for different problem parameters. The results of this study showed that the variations in the contact lengths at the interface between the rigid cylindrical stamp and the FG layer, those between the homogeneous layer and the FG layer, and the maximum contact pressures at these interfaces depended on various dimensionless quantities such as the stamp radius, stiffness parameter, shear modulus ratio, and elastic spring constant ratio. We observed that the results obtained with the three different methods, namely the analytical method, FEM, and MLP, are extremely compatible with each other, thus proving the accuracy of these results.

Source

Mechanics of Materials

Volume

154

URI

https://doi.org/10.1016/j.mechmat.2020.103730
https://hdl.handle.net/11436/6655

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [261]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.