• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of cardiac arrhythmias using Zhao-Atlas-Marks time-frequency distribution

Thumbnail

View/Open

Full Text / Tam Metin (753.1Kb)

Access

info:eu-repo/semantics/closedAccess

Date

2021

Author

Akdeniz, Fulya
Kayıkcıoğlu, İlknur
Kayıkcıoğlu, Temel

Metadata

Show full item record

Citation

Akdeniz, F., Kayikcioglu, I. & Kayikcioglu, T. (2021). Classification of cardiac arrhythmias using Zhao-Atlas-Marks time-frequency distribution. Multimedia Tools and Applications, 80(20), 30523-30537. https://doi.org/10.1007/s11042-021-10945-6

Abstract

The major function of heart is to pump blood to tissues and organs necessary for the body metabolism. It is therefore one of the organs that affects human life. However, adverse situations, such as paralysis and death are the major problems that can lead to a heart failure. Healthy heart is very important to live comfortably. To prevent adverse events, it is important to monitor and detect heart diseases early. The aim of proposed method is to determine and classify nine types of ECG arrhythmias, including normal beats. A large feature set was obtained from the MIT-BIH Arrhythmia database. Zhao Atlas-Mark time-frequency distribution was used to extract the feature set. Five classification algorithms have been tried. The Cubic Support Vector Machine algorithm yielded best performance results. The proposed method achieved accuracy, sensitivity, specificity, F-score, positive predictive, and negative predictive values of 96.39%, 94.22%, 92.02%, 93.91%, 93.90% and 96.72%, respectively. Considering the data size, performance values, and number of arrythmias, the proposed method provided superiority to other studies. Furthermore, running time is suitable for telemedicine systems.

Source

Multimedia Tools and Applications

Volume

80

Issue

20

URI

https://doi.org/10.1007/s11042-021-10945-6
https://hdl.handle.net/11436/6661

Collections

  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [199]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.