• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of industrial solid waste as filling material on mechanical and microstructural characteristics of cementitious backfills

Thumbnail

View/Open

Full Text / Tam Metin (14.27Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2021

Author

Li, Jiajian
Yılmaz, Erol
Cao, Shuai

Metadata

Show full item record

Citation

Li, L., Yilmaz, E. & Cao, S. (2021). Influence of industrial solid waste as filling material on mechanical and microstructural characteristics of cementitious backfills. Construction and Building Materials, 299, 124288. https://doi.org/10.1016/j.conbuildmat.2021.124288

Abstract

Use of industrial solid wastes (e.g., fly ash, desulfurization gypsum, steel slag) as mine fill material not only solves the environmental risks dictated by the sustainable management of these wastes, but also reduces the operational costs of backfilling. Utilization of backfill in underground mining enhances both local and regional ground support, leading to maximum ore extraction and minimum solid wastes storage. In this study, the mechanical and microstructural characteristics of cementitious backfill (CB) with fly ash-FA, desulfurization gypsum-DG, and steel slag-SS were studied by both uniaxial compressive strength (UCS) and scanning electron microscope test. CB samples were made at a constant solid content of 70 wt% and subjected to UCS testing after a curing time of up to 14 days. Cement-to-solid waste ratio for all CB samples was kept as 1:12. Results reveal that: the UCS value of 14-day cured fills ranges between 1.32 and 2.60 MPa, and the optimal ratio of solid waste was 2:4:4 (DG: FA: SS). The strength performance of backfilling increases with increasing DG and FA values and decreases with increasing SS value. The failure form of backfills is manifested as a tensile failure, and at the bottom of the phenomenon of varying degrees of loose expansion. Microstructural analyses showed that the hydration products in CB samples includes AFt and C-(A)S-H gels. The mineralogical name of AFt is Ettringite (3CaO.Al2O3.3CaSO(4).32H(2)O). The cementing performance of the latter is better than the first (AFt). With the increased FA contents and curing times, hydration products in CB increased and porosity decreased. The outcome of this work will afford a theoretical support for using solid waste as backfilling, advance the management techniques for employing the fill and also propose significant savings in the cement-related costs without negotiating on the safety.

Source

Construction and Building Materials

Volume

299

URI

https://doi.org/10.1016/j.conbuildmat.2021.124288
https://hdl.handle.net/11436/6673

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [261]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.