Basit öğe kaydını göster

dc.contributor.authorBülbül, Ogün
dc.contributor.authorBülbül, Hande Melike
dc.contributor.authorTertemiz, Kemal Can
dc.contributor.authorKaya, Gamze Çapa
dc.contributor.authorGürel, Duygu
dc.contributor.authorUlukuş, Emine Çağnur
dc.contributor.authorGezer, Naciye Sinem
dc.date.accessioned2022-11-11T10:36:14Z
dc.date.available2022-11-11T10:36:14Z
dc.date.issued2022en_US
dc.identifier.citationBülbül, O., Bülbül, H. M., Tertemiz, K. C., Çapa Kaya, G., Gürel, D., Ulukuş, E. Ç., & Gezer, N. S. (2022). Contribution of F-18 fluorodeoxyglucose PET/CT and contrast-enhanced thoracic CT texture analyses to the differentiation of benign and malignant mediastinal lymph nodes. Acta radiologica (Stockholm, Sweden : 1987), 2841851221130620. Advance online publication. https://doi.org/10.1177/02841851221130620en_US
dc.identifier.issn0284-1851
dc.identifier.issn1600-0455
dc.identifier.urihttps://doi.org/10.1177/02841851221130620
dc.identifier.urihttps://hdl.handle.net/11436/6984
dc.description.abstractBackground Texture analysis and machine learning methods are useful in distinguishing between benign and malignant tissues. Purpose To discriminate benign from malignant or metastatic mediastinal lymph nodes using F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and contrast-enhanced computed tomography (CT) texture analyses with machine learning and determine lung cancer subtypes based on the analysis of lymph nodes. Material and Methods Suitable texture features were entered into the algorithms. Features that statistically significantly differed between the lymph nodes with small cell lung cancer (SCLC), adenocarcinoma (ADC), and squamous cell carcinoma (SCC) were determined. Results The most successful algorithms were decision tree with the sensitivity, specificity, and area under the curve (AUC) values of 89%, 50%, and 0.692, respectively, and naive Bayes (NB) with the sensitivity, specificity, and AUC values of 50%, 81%, and 0.756, respectively, for PET/CT, and NB with the sensitivity, specificity, and AUC values of 10%, 96%, and 0.515, respectively, and logistic regression with the sensitivity, specificity, and AUC values of 21%, 83%, and 0.631, respectively, for CT. In total, 13 features were able to differentiate SCLC and ADC, two features SCLC and SCC, and 33 features ADC and SCC lymph node metastases in PET/CT. One feature differed between SCLC and ADC metastases in CT. Conclusion Texture analysis is beneficial to discriminate between benign and malignant lymph nodes and differentiate lung cancer subtypes based on the analysis of lymph nodes.en_US
dc.language.isoengen_US
dc.publisherSage Publicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPositron emission tomographyen_US
dc.subjectComputed tomographyen_US
dc.subjectMediastinumen_US
dc.titleContribution of F-18 fluorodeoxyglucose PET/CT and contrast-enhanced thoracic CT texture analyses to the differentiation of benign and malignant mediastinal lymph nodesen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Tıp Fakültesi, Dahili Tıp Bilimleri Bölümüen_US
dc.contributor.institutionauthorBülbül, Ogün
dc.contributor.institutionauthorBülbül, Hande Melike
dc.identifier.doi10.1177/02841851221130620en_US
dc.relation.journalActa Radiologicaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster