• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative parotid gland segmentation by using ResNet-18 and MobileNetV2 based DeepLab v3+architectures from magnetic resonance images

Thumbnail

Göster/Aç

Full Text / Tam Metin (4.187Mb)

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2022

Yazar

Sünnetçi, Kubilay Muhammed
Kaba, Esat
Çeliker, Fatma Beyazal
Alkan, Ahmet

Üst veri

Tüm öğe kaydını göster

Künye

Sunnetci, K.M., Kaba, E., Celiker, F.b. & Alkan, A. (2022). Comparative parotid gland segmentation by using ResNet-18 and MobileNetV2 based DeepLab v3+architectures from magnetic resonance images. Concurrency and Computation: Practice and Experience. https://doi.org/10.1002/cpe.7405

Özet

Nowadays, artificial intelligence-based medicine plays an important role in determining correlations not comprehensible to humans. In addition, the segmentation of organs at risk is a tedious and time-consuming procedure. Segmentation of these organs or tissues is widely used in early diagnosis, treatment planning, and diagnosis. In this study, we trained semantic segmentation networks to segment healthy parotid glands using deep learning. The dataset we used in the study was obtained from Recep Tayyip Erdogan University Training and Research Hospital, and there were 72 T2-weighted magnetic resonance (MR) images in this dataset. After these images were manually segmented by experts, masks of these images were obtained according to them and all images were cropped. Afterward, these cropped images and masks were rotated 45 degrees, 120 degrees, and 210 degrees, quadrupling the number of images. We trained ResNet-18/MobileNetV2-based DeepLab v3+ without augmentation and ResNet-18/MobileNetV2-based DeepLab v3+ with augmentation using these datasets. Here, we set the training set and testing set sizes for all architectures to be 80% and 20%, respectively. We designed two different graphical user interface (GUI) applications so that users can easily segment their parotid glands by utilizing all of these deep learning-based semantic segmentation networks. From the results, mean-weighted dice values of MobileNetV2-based DeepLab v3+ without augmentation and ResNet-18-based DeepLab v3+ with augmentation were equal to 0.90845-0.93931 and 0.93237-0.96960, respectively. We also noted that the sensitivity (%), specificity (%), F-1 score (%) values of these models were equal to 83.21, 96.65, 85.04 and 89.81, 97.84, 87.80, respectively. As a result, these designed models were found to be clinically successful, and the user-friendly GUI applications of these proposed systems can be used by clinicians. This study is competitive as it uses MR images, can automatically segment both parotid glands, the results are meaningful according to the literature and have software application.

Kaynak

Concurrency and Computation: Practice and Experience

Bağlantı

https://doi.org/10.1002/cpe.7405
https://hdl.handle.net/11436/7046

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • TF, Dahili Tıp Bilimleri Bölümü Koleksiyonu [1559]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.