• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A data-driven Bayesian Network model for oil spill occurrence prediction using tankship accidents

Thumbnail

View/Open

Full Text / Tam Metin (10.68Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2022

Author

Sevgili, Coşkan
Fışkın, Remzi
Çakır, Erkan

Metadata

Show full item record

Citation

Sevgili, C., Fiskin, R. & Cakir, E. (2022). A data-driven Bayesian Network model for oil spill occurrence prediction using tankship accidents. Journal of Cleaner Production, 370, 133478. https://doi.org/10.1016/j.jclepro.2022.133478

Abstract

Oil spills are one of the most important issues facing the maritime industry, with a wide range of catastrophic environmental, social, and economic effects. While all marine accidents can cause pollution, tankships are most likely to cause oil spills due to their cargo content. Accordingly, this study develops a model based on a data -driven Bayesian Network (BN) algorithm to predict whether oil spills may occur following tankship accidents using a total of 2080 accident reports of non-US flagged vessels from the database of the United States Coast Guard (USCG). The analysis shows that the developed model has a very high predictive power with an accuracy value of 75.96%. The most important variables affecting oil spill probability are accident type, vessel age, vessel size and waterway type. The findings are also supported by various scenario tests. These findings will be especially useful for decision-making authorities to predict as quickly as possible whether an oil spill will occur following an accident in order to reduce the time to intervene.

Source

Journal of Cleaner Production

Volume

370

URI

https://doi.org/10.1016/j.jclepro.2022.133478
https://hdl.handle.net/11436/7123

Collections

  • DNZF, Deniz Ulaştırma İşletme Mühendisliği Bölümü Koleksiyonu [102]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.