A comparison study of dual-energy spectral CT and 18F-FDG PET/CT in primary tumors and lymph nodes of lung cancer
Künye
Kupik, O., Metin, Y., Eren, G., Orhan Metin, N., & Arpa, M. (2021). A comparison study of dual-energy spectral CT and 18F-FDG PET/CT in primary tumors and lymph nodes of lung cancer. Diagnostic and interventional radiology (Ankara, Turkey), 27(2), 275–282. https://doi.org/10.5152/dir.2021.20016Özet
PURPOSE We aimed to investigate whether there is a correlation between dual-energy spectral computed tomography (DESCT) and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) parameters in primary tumor and metastatic lymph nodes in patients with newly diagnosed lung cancer. METHODS Primary tumor and metastatic lymph nodes of 68 patients diagnosed with lung cancer were evaluated retrospectively with 18F-FDG PET/CT and DESCT imaging. The histologic subtypes were adenocarcinoma (n=29), squamous cell carcinoma (SCC) (n=26), small cell lung cancer (SCLC) (n=11), and large cell neuroendocrine cancer (LCNEC) (n=2). In terms of PET parameters, SUVmax, SUVmean, SULmax, SULmean, SULpeak, and normalized SUL values were obtained for primary tumors and metastatic lymph nodes. In terms of DESCT parameters, maximum and mean iodine content (IC), normalized IC values, iodine enhancement (IE) and normalized IE values were calculated. RESULTS We found no correlation between DESCT and 18F-FDG PET/CT parameters in primary tumors and metastatic lymph nodes. In addition, no correlation was found in the analysis performed in any of the histologic subgroups. In patients with a primary tumor <3 cm, there was a moderate negative correlation between the parameters SUVmax-ICmax (r= -0.456, p = 0.043), SUVmean-ICmax (r= -0.464, p = 0.039) SULmean-ICmax (r= -0.497, p = 0.026), SUVmax-ICmean (r= -0.527, p = 0.020), SULmean-ICmean (r= -0.499, p = 0.025), and SULpeak-ICmean (r= -0.488, p = 0.029). CONCLUSION We consider that DESCT and 18F-FDG PET/CT indicate different characteristics of the tumors and should not supersede each other.