• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel framework for strength prediction of geopolymer mortar: Renovative precursor effect

Thumbnail

Göster/Aç

Full Text / Tam Metin (3.202Mb)

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2023

Yazar

Kurt, Zafer
Yılmaz, Yıldıran
Çakmak, Talip
Ustabaş, İlker

Üst veri

Tüm öğe kaydını göster

Künye

Kurt, Z., Yılmaz, Y., Çakmak, T. & Ustabaş, İ. (2023). A novel framework for strength prediction of geopolymer mortar: Renovative precursor effect. Journal of Building Engineering, 76, 107041. https://doi.org/10.1016/j.jobe.2023.107041

Özet

Concrete is the most used building material today as it has many advantages due to its structure. Geopolymer composites could potentially replace concrete in the future due to the demands of the construction industry. The studies related to the geopolymers have challenges due to the lack of a linear relationship between compressive strength (CS) and flexural strength (FS) caused by factors such as a binder, mixing parameters, limited available data, and time-consuming trial and error methods. Novel prediction models need to be developed as the reliability of the prediction model currently being used requires improvement. This study attempts to develop an optimum prediction technique for compressive strength and flexural strength of geopolymer by using Machine Learning (ML) algorithms to meet the mentioned research need. For this purpose, a new database was created with mechanical properties (156 (CS) and (FS) obtained from geopolymer mortar samples with a comprehensive laboratory process using materials such as obsidian (OB), Ground granulated blast furnace slag (GGBS), and metakaolin (MT) as binders. Five machine-learning algorithms were applied to the dataset. Feature statistics and two different feature ranking methods were also performed to regulate each ML algorithm. Among the algorithms, the best R square performance results were given by Random Forest as a value of 0.983. In the sensitivity analysis that examined the effects of inputs on outputs, obsidian was shown to be the most important input.

Kaynak

Journal of Building Engineering

Cilt

76

Bağlantı

https://doi.org/10.1016/j.jobe.2023.107041
https://hdl.handle.net/11436/8316

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [47]
  • İnşaat Mühendisliği Bölümü Koleksiyonu [260]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.