Basit öğe kaydını göster

dc.contributor.authorYağanoğlu, Elif
dc.contributor.authorŞenol, Nergiz Dila
dc.contributor.authorYerli, Caner
dc.date.accessioned2023-11-16T06:27:12Z
dc.date.available2023-11-16T06:27:12Z
dc.date.issued2023en_US
dc.identifier.citationYağanoğlu, E., Şenol, N.D. & Yerli, C. (2023). Enhancing soil properties and crop growth in varied-texture soils: Evaluating the efficacy of biochar in mitigating irrigation water salinity. Environmental Engineering and Management Journal, 22(7), 1157-1172. http://doi.org/10.30638/eemj.2023.096en_US
dc.identifier.issn1582-9596
dc.identifier.urihttp://doi.org/10.30638/eemj.2023.096
dc.identifier.urihttps://hdl.handle.net/11436/8673
dc.description.abstractThe dwindling freshwater resources and escalating pressure on them have underscored the imperative of utilizing low-quality saline water for irrigation. Nevertheless, this practice often exacts a toll on soil quality and leads to a decline in crop yield and quality. Consequently, there is an urgent demand for innovative, environmentally sustainable approaches to safeguard soil health and crop productivity when utilizing saline water for irrigation. Pyrolyzed biomass, commonly known as biochar, emerges as a promising and eco-friendly soil amendment with the potential to withstand the rigors of salinity stress. In light of this, our study aims to assess the impact of different rates of biochar application in mitigating the effects of varying levels of irrigation water salinity across diverse soil textures. We investigate alterations in soil properties, enzymatic activities, mineral content, as well as the physiological and morphological attributes of tomato plants. The objective is to comprehensively understand the potential of biochar to ameliorate salt stress under different soil conditions. Our findings indicate that biochar, when employed in conjunction with NaCl-laden irrigation water, enhances the physiological and morphological characteristics of tomato plants, augments the concentrations of essential nutrients such as N, P, and K, and fosters the development of soil aggregate stability. Furthermore, biochar positively influences pH levels, organic matter content, total N, P2O5, K2O, cation exchange capacity (CEC), and soil enzyme activities. Importantly, it fortifies the crop's resilience to salinity stress. Significant disparities between soil textures are discerned in all assessed parameters; however, biochar consistently exhibits its salinity-mitigating efficacy across all soil types. In summary, our research underscores biochar as a promising and universally applicable solution for mitigating stress and enhancing the quality of tomato crops and soil health when confronted with the challenge of saline water for irrigation.en_US
dc.language.isoengen_US
dc.publisherGheorghe Asachi Technical University of Iasi, Romaniaen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiocharen_US
dc.subjectIrrigation water salinityen_US
dc.subjectSoil propertiesen_US
dc.subjectSoil textureen_US
dc.subjectTomatoen_US
dc.titleEnhancing soil properties and crop growth in varied-texture soils: Evaluating the efficacy of biochar in mitigating irrigation water salinityen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜen_US
dc.contributor.institutionauthorŞenol, Nergiz Dila
dc.identifier.doi10.30638/eemj.2023.096en_US
dc.identifier.volume22en_US
dc.identifier.issue7en_US
dc.identifier.startpage1157en_US
dc.identifier.endpage1172en_US
dc.relation.journalEnvironmental Engineering and Management Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster