• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Recurrent neural network and long short-term memory models for audio copy-move forgery detection: a comprehensive study

View/Open

Tam Metin / Full Text (2.467Mb)

Access

info:eu-repo/semantics/openAccess

Date

2024

Author

Akdeniz, Fulya
Becerikli, Yaşar

Metadata

Show full item record

Citation

Akdeniz, F. & Becerikli, Y. (2024). Recurrent neural network and long short-term memory models for audio copy-move forgery detection: a comprehensive study. Journal of Supercomputing. https://doi.org/10.1007/s11227-024-05960-x

Abstract

One of the most pressing challenges in audio forgery detection—a major topic of signal analysis and digital forensics research—is detecting copy-move forgery in audio data. Because audio data are used in numerous sectors, including security, but increasingly tampered with and manipulated, studies dedicated to detecting forgery and verifying voice data have intensified in recent years. In our study, 2189 fake audio files were produced from 2189 audio recordings on the TIMIT corpus, for a total of 4378 audio files. After the 4378 files were preprocessed to detect silent and unsilent regions in the signals, a Mel-frequency-based hybrid feature data set was obtained from the 4378 files. Next, RNN and LSTM deep learning models were applied to detect audio forgery in the data set in four experimental setups—two with RNN and two with LSTM—using the AdaGrad and AdaDelta optimizer algorithms to identify the optimum solution in the unlinear systems and minimize the loss rate. When the experimental results were compared, the accuracy rate of detecting forgery in the hybrid feature data was 76.03%, and the hybrid model, in which the features are used together, demonstrated high accuracy even with small batch sizes. This article thus reports the first-ever use of RNN and LSTM deep learning models to detect audio copy-move forgery. Moreover, because the proposed method does not require adjusting threshold values, the resulting system is more robust than other systems described in the literature.

Source

Journal of Supercomputing

URI

https://doi.org/10.1007/s11227-024-05960-x
https://hdl.handle.net/11436/9029

Collections

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [47]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.