• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental study for in vitro prostate cancer treatment with microwave ablation and pulsed electromagnetic field

View/Open

Full Text / Tam Metin (8.363Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Murat, Caner
Kaya, Adnan
Kaya, Dilek
Erdoğan, Mümin Alper

Metadata

Show full item record

Citation

Murat, C., Kaya, A., Kaya, D., & Erdoğan, M. A. (2024). Experimental study for in vitro prostate cancer treatment with microwave ablation and pulsed electromagnetic field. Electromagnetic biology and medicine, 1–10. Advance online publication. https://doi.org/10.1080/15368378.2024.2345606

Abstract

This paper presents the findings of a comprehensive study exploring the synergistic effects arising from the combination of microwave ablation and pulsed electromagnetic field (PEMF) therapy on prostate cancer cells. The research encompassed five distinct experimental groups, with continuous electric field measurements conducted during the entire treatment process. Group 1 and Group 2, subjected to microwave power below 350 W, exhibited specific electric field values of 72,800 V/m and 56,600 V/m, respectively. In contrast, Group 3 and Group 4, exposed to 80 W microwave power, displayed electric field levels of approximately 1450 V/m, while remaining free from any observable electrical discharges. The migratory and invasive capacities of PC3 cells were assessed through a scratch test in all groups. Notably, cells in Group 3 and Group 4, subjected to the combined treatment of microwave ablation and PEMF, demonstrated significantly accelerated migration in comparison to those in Groups 1 and 2. Additionally, Group 5 cells, receiving PEMF treatment in isolation, exhibited decreased migratory ability. These results strongly suggest that the combined approach of microwave ablation and PEMF holds promise as a potential therapeutic intervention for prostate cancer, as it effectively reduced cell viability, induced apoptosis, and impeded migration ability in PC3 cells. Moreover, the isolated use of PEMF demonstrated potential in limiting migratory capacity, which could hold critical implications in the fight against cancer metastasis. In this study, a new approach to treat prostate cancer by combining microwave ablation (MWA) and pulsed electromagnetic field (PEMF) therapy is explored. We used specific devices like rectangular waveguides for MWA and circular coils for PEMF. The energy sources utilized in the study comprised a magnetron tube system, similar to the microwave source found in a microwave oven, for generating microwaves, and a signal generator for producing PEMF. We used specialized equipment for MWA and PEMF to maintain controlled conditions, ensuring precise and reliable results. The research included testing various groups of prostate cancer cells exposed to different intensities of microwave power and magnetic flux density. The movement of cancer cells in different groups was examined through a wound healing assay, where cancer cells were placed on a flat surface, and we observed whether they filled the gap created by their movement. Interestingly, cells treated with both MWA and PEMF demonstrated faster movement compared to cells treated with MWA alone or PEMF alone. This combined treatment not only effectively decreased cell movement but also showed the potential cell death. The results showed that the combination of MWA and PEMF suggest a promising therapeutic strategy. The findings contribute to the development of precise and effective therapies that could enhance patient outcomes and quality of life. However, further research and validation are essential before translating these findings into clinical applications.

Source

Electromagnetic Biology and Medicine

URI

https://doi.org/10.1080/15368378.2024.2345606
https://hdl.handle.net/11436/9048

Collections

  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [198]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [5990]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.