Basit öğe kaydını göster

dc.contributor.authorErgün, Ebru
dc.date.accessioned2024-08-13T06:47:44Z
dc.date.available2024-08-13T06:47:44Z
dc.date.issued2024en_US
dc.identifier.citationErgün, E. (2024). Deep learning based multiclass classification for citrus anomaly detection in agriculture. Signal, Image and Video Processing. https://doi.org/10.1007/s11760-024-03452-2en_US
dc.identifier.issn1863-1703
dc.identifier.issn1863-1711
dc.identifier.urihttps://doi.org/10.1007/s11760-024-03452-2
dc.identifier.urihttps://hdl.handle.net/11436/9229
dc.description.abstractIn regions where citrus crops are threatened by diseases caused by fungi, bacteria, pests and viruses, growers are actively seeking automated technologies that can accurately detect citrus anomalies to minimize economic losses. Recent advances in deep learning techniques have shown potential in automating and improving the accuracy of citrus anomaly categorization. This research explores the use of deep learning methods, specifically DenseNet, to construct robust models capable of accurately distinguishing between different types of citrus anomalies. The dataset consists of high-resolution images of different orange leaves of the species Citrus sinensis osbeck, collected from orange groves in the states of Tamaulipas and San Luis Potosi in northeastern Mexico was used in study. Experimental results demonstrated the effectiveness of the proposed deep learning models in simultaneously identifying 12 different classes of citrus anomalies. Evaluation metrics, including accuracy, recall, precision and the confusion matrix, underscore the discriminative power of the models. Among the convolutional neural network architectures used, DenseNet achieved the highest classification accuracy at 99.50%. The study concluded by highlighting the potential for scalable and effective citrus anomaly classification and management using deep learning-based systems.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCitrus anomaly classificationen_US
dc.subjectAgricultural managementen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep learningen_US
dc.subjectMulti-class classificationen_US
dc.titleDeep learning based multiclass classification for citrus anomaly detection in agricultureen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Mühendislik ve Mimarlık Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.contributor.institutionauthorErgün, Ebru
dc.identifier.doi10.1007/s11760-024-03452-2en_US
dc.relation.journalSignal, Image and Video Processingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster