• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-driven modelling and predictive analytics in business and finance: Concepts, designs, technologies, and applications

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2024

Yazar

Khang, Alex
Gujrati, Rashmi
Uygun, Hayri
Tailor R.K.
Gaur, Sanjaya Singh

Üst veri

Tüm öğe kaydını göster

Künye

Khang, A., Gujrati, R., Uygun, H., Tailor, R. K., & Gaur, S. (2024). Data-Driven Modelling and Predictive Analytics in Business and Finance. Auerbach Publications. https://doi.org/10.1201/9781032618845

Özet

Data-driven and AI-aided applications are next-generation technologies that can be used to visualize and realize intelligent transactions in finance, banking, and business. These transactions will be enabled by powerful data-driven solutions, IoT technologies, AI-aided techniques, data analytics, and visualization tools. To implement these solutions, frameworks will be needed to support human control of intelligent computing and modern business systems. The power and consistency of data-driven competencies are a critical challenge, and so is developing explainable AI (XAI) to make data-driven transactions transparent. Data- Driven Modelling and Predictive Analytics in Business and Finance covers the need for intelligent business solutions and applications. Explaining how business applications use algorithms and models to bring out the desired results, the book covers: Data-driven modelling Predictive analytics Data analytics and visualization tools AI-aided applications Cybersecurity techniques Cloud computing IoT-enabled systems for developing smart financial systems This book was written for business analysts, financial analysts, scholars, researchers, academics, professionals, and students so they may be able to share and contribute new ideas, methodologies, technologies, approaches, models, frameworks, theories, and practices.

Kaynak

Data-Driven Modelling and Predictive Analytics in Business and Finance: Concepts, Designs, Technologies, and Applications

Bağlantı

https://doi.org/10.1201/9781032618845
https://hdl.handle.net/11436/9239

Koleksiyonlar

  • Ardeşen Meslek Yüksekokulu Koleksiyonu [58]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.