• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of tooth development stages with deep learning-based artificial intelligence algorithm

Göster/Aç

Tam Metin / Full Text (2.362Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2024

Yazar

Kurt, Ayça
Günaçar, Dilara Nil
Şılbır, Fatma Yanık
Yeşil, Zeynep
Bayrakdar, İbrahim Şevki
Çelik, Özer
Bilgir, Elif
Orhan, Kaan

Üst veri

Tüm öğe kaydını göster

Künye

Kurt, A., Günaçar, D. N., Şılbır, F. Y., Yeşil, Z., Bayrakdar, İ. Ş., Çelik, Ö., Bilgir, E., & Orhan, K. (2024). Evaluation of tooth development stages with deep learning-based artificial intelligence algorithm. BMC Oral Health, 24(1), 1034. https://doi.org/10.1186/s12903-024-04786-6

Özet

Background: This study aims to evaluate the performance of a deep learning system for the evaluation of tooth development stages on images obtained from panoramic radiographs from child patients. Methods: The study collected a total of 1500 images obtained from panoramic radiographs from child patients between the ages of 5 and 14 years. YOLOv5, a convolutional neural network (CNN)-based object detection model, was used to automatically detect the calcification states of teeth. Images obtained from panoramic radiographs from child patients were trained and tested in the YOLOv5 algorithm. True-positive (TP), false-positive (FP), and false-negative (FN) ratios were calculated. A confusion matrix was used to evaluate the performance of the model. Results: Among the 146 test group images with 1022 labels, there were 828 TPs, 308 FPs, and 1 FN. The sensitivity, precision, and F1-score values of the detection model of the tooth stage development model were 0.99, 0.72, and 0.84, respectively. Conclusions: In conclusion, utilizing a deep learning-based approach for the detection of dental development on pediatric panoramic radiographs may facilitate a precise evaluation of the chronological correlation between tooth development stages and age. This can help clinicians make treatment decisions and aid dentists in finding more accurate treatment options.

Kaynak

BMC Oral Health

Cilt

24

Sayı

1

Bağlantı

https://doi.org/10.1186/s12903-024-04786-6
https://hdl.handle.net/11436/9328

Koleksiyonlar

  • DŞHF, Klinik Bilimler Bölümü Koleksiyonu [244]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.