• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and optimisations of metal-oxide artificial synaptic device based machine learning model

Göster/Aç

Tam Metin / Full Text (1.935Mb)

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2024

Yazar

Yılmaz, Yıldıran
Gül, Fatih

Üst veri

Tüm öğe kaydını göster

Künye

Yilmaz, Y., & Gul, F. (2024). Design and Optimisations of Metal-Oxide Artificial Synaptic Device Based Machine Learning Model. IEEE Transactions on Emerging Topics in Computational Intelligence, 1–11. https://doi.org/10.1109/tetci.2024.3446448

Özet

Synaptic device-based neural network models are increasingly favored for their energy-efficient computing capabilities. However, as the demand for scalable and resource-efficient computing solutions continues to grow, there is a pressing need to explore novel computational paradigms inspired by the human brain. Motivated by the ongoing imperative to enhance the accuracy performance of hardware-based neural network models to compete with software-based counterparts, this paper investigates the potential of memristor-based nanodevice, particularly TiO2 synaptic device, as a promising candidate for hardware-based neural network models and seeks to improve accuracy performance. The innovation of this work lies in the comparative analysis of optimization methods to improve the classification accuracy of hardware-based neural network models using TiO2 synaptic device. By investigating various optimization functions, including SGD, Momentum, RMSProp, Adam, and Adagrad learning methods, this study aims to provide insights into the effectiveness of these methods in enhancing the accuracy of TiO2 synaptic device-based neural network models. Experimental results demonstrate that the choice of optimization method significantly impacts the accuracy of the models, with the Adam algorithm achieving the highest classification accuracy of 92.39% on the MNIST dataset, showcasing the potential of optimized hardware-based models to advance machine learning applications, particularly in image processing and character recognition.

Kaynak

IEEE Transactions On Emerging Topics In Computational Intelligence

Bağlantı

https://doi.org/10.1109/tetci.2024.3446448
https://hdl.handle.net/11436/9336

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [47]
  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [197]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.