Basit öğe kaydını göster

dc.contributor.authorÇamlıyurt, Gökhan
dc.contributor.authorTapiquen, Efrain Porto
dc.contributor.authorPark, Sangwon
dc.contributor.authorKang, Wonsik
dc.contributor.authorKim, Daewon
dc.contributor.authorAydın, Muhammet
dc.contributor.authorAkyüz, Emre
dc.contributor.authorPark, Youngsoo
dc.date.accessioned2024-10-16T06:10:43Z
dc.date.available2024-10-16T06:10:43Z
dc.date.issued2024en_US
dc.identifier.citationCamliyurt, G., Tapiquén, E. P., Park, S., Kang, W., Kim, D., Aydin, M., Akyuz, E., & Park, Y. (2024). Enhancing shipboard oil pollution prevention: Machine learning innovations in oil discharge monitoring equipment. Marine Pollution Bulletin, 208, 116946. https://doi.org/10.1016/j.marpolbul.2024.116946en_US
dc.identifier.issn0025-326X
dc.identifier.issn1879-3363
dc.identifier.urihttps://doi.org/10.1016/j.marpolbul.2024.116946
dc.identifier.urihttps://hdl.handle.net/11436/9609
dc.description.abstractMaritime operations face significant challenges in environmental stewardship, particularly in managing oil discharges from tankers as mandated by the International Convention for the Prevention of Pollution from Ships (MARPOL) Annex I, Regulation 34. Traditional Oil Discharge Monitoring Equipment (ODME) methods rely on manual decision-making, often failing to accurately identify MARPOL-defined no-go zones, estimate operation completion times, and recommend course alterations during decanting operations. This study introduces a novel approach by integrating advanced machine learning techniques-Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM)-to enhance ODME operations. Specifically, these models automate the identification of no-go zones and optimize operational decisions, leading to a 99 % accuracy rate in compliance with MARPOL regulations and an operational time estimation error margin of <1 %. Unlike traditional methods, our approach leverages large datasets and real-time GPS (Global Positioning System) data, significantly reducing human error and enhancing both environmental compliance and operational efficiency. To our knowledge, this is the first study to specifically address the application of machine learning to decanting operations under MARPOL Annex I, marking a significant advancement in maritime environmental management.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMARPOL conventionen_US
dc.subjectOil discharge monitoringen_US
dc.subjectShipboard ocean pollution preventionen_US
dc.subjectMachine learningen_US
dc.subjectExtreme gradient boostingen_US
dc.subjectLight gradient boosting machineen_US
dc.titleEnhancing shipboard oil pollution prevention: Machine learning innovations in oil discharge monitoring equipmenten_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Turgut Kıran Denizcilik Fakültesi, Deniz Ulaştırma İşletme Mühendisliği Bölümüen_US
dc.contributor.institutionauthorAydın, Muhammet
dc.identifier.doi10.1016/j.marpolbul.2024.116946en_US
dc.identifier.volume208en_US
dc.identifier.startpage116946en_US
dc.relation.journalMarine Pollution Bulletinen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster