• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of factors affecting fresh herbage yield in pea (Pisum arvense L.) using data mining algorithms

Göster/Aç

Tam Metin / Full Text (4.552Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2024

Yazar

Çatal, Muhammed İkbal
Çelik, Şenol
Bakoğlu, Adil

Üst veri

Tüm öğe kaydını göster

Künye

Çatal, M. İ., Çelik, Ş., & Bakoğlu, A. (2024). Investigation of factors affecting fresh herbage yield in pea (Pisum arvense L.) using data mining algorithms. Frontiers in Plant Science, 15, 1482723. https://doi.org/10.3389/fpls.2024.1482723

Özet

This study was carried out to determine the factors affecting the wet grass yield of pea plants grown in Turkey. Wet grass yield was predicted using parameters such as genotype, crude protein, crude ash, acid detergent fiber (ADF), and neutral detergent fiber (NDF) with some data mining algorithms. These techniques provided easily interpretable data trees and precise cutoff values. This led to a comparison of the predictive abilities of data mining methods, including multivariate adaptive regression spline (MARS), Chi-square automatic interaction detection (CHAID), classification and regression tree (CART), and artificial neural network (ANN). To test the compatibility of the data mining algorithms, seven goodness-of-fit criteria were used. The predictive abilities of the fitted models were assessed using model fit statistics such as the coefficient of determination (R2), adjusted R2, root mean square error (RMSE), mean absolute percentage error (MAPE), standard deviation ratio (SD ratio), Akaike information criterion (AIC), and corrected Akaike information criterion (AICc). With the greatest R2 and adjusted R2 values (0.998 and 0.986) and the lowest values of RMSE, MAPE, SD ratio, AIC, and AICc (10.499, 0.7365, 0.047, 268, and 688, respectively), the MARS method was determined to be the best model for quantifying plant fresh herbage yield. In estimating the fresh herbage production of the pea plant, the results showed that the MARS method was the most appropriate model and a good substitute for other data mining techniques.

Kaynak

Frontiers in Plant Science

Cilt

15

Sayı

1482723

Bağlantı

https://doi.org/10.3389/fpls.2024.1482723
https://hdl.handle.net/11436/9853

Koleksiyonlar

  • Pazar Meslek Yüksekokulu Koleksiyonu [73]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • Tarla Bitkileri Bölümü Koleksiyonu [50]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.