• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trace element concentrations in effluent of municipal wastewater treatment plants along the Turkish coasts and assessment of human health risk

View/Open

Tam Metin / Full Text (2.383Mb)

Access

info:eu-repo/semantics/openAccess

Date

2024

Author

Akdemir, Tolga

Metadata

Show full item record

Citation

Akdemir, T. (2024). Trace element concentrations in effluent of municipal wastewater treatment plants along the Turkish coasts and assessment of human health risk. Frontiers in Marine Science, 11, 1521449. https://doi.org/10.3389/fmars.2024.1521449

Abstract

This study evaluated the concentrations, sources, and health risks of trace metals and metalloids in the effluents of 15 wastewater treatment plants (WWTPs) located along the Black Sea and the Sea of Marmara, ecologically and economically vital regions of Türkiye. Effluent samples were collected in winter and autumn, and metal concentrations were analyzed using ICP-MS to assess seasonal variations and potential risks. Results showed notable seasonal and regional differences, with aluminium (Al) and nickel (Ni) as the most abundant metals. The highest total metal concentration was recorded in autumn at station S2 (326.09 mg/L). Non-carcinogenic risks were negligible (HI< 1) across all stations, but low carcinogenic risks (10-6< CRi ≤ 10-4) for chromium (Cr) and nickel (Ni) were detected at some locations. Source apportionment using Principal Component Analysis revealed mixed geogenic and anthropogenic origins, primarily from industrial activities and urban runoff. While effluents generally complied with national standards, several metals exceeded international limits, highlighting risks to ecosystems and human health. These findings underscore the urgent need for stricter discharge regulations, improved treatment technologies, and continuous monitoring to mitigate the environmental and health impacts of WWTP discharges.

Source

Frontiers in Marine Science

Volume

11

URI

https://doi.org/10.3389/fmars.2024.1521449
https://hdl.handle.net/11436/9932

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [5990]
  • Teknik Bilimler Meslek Yüksekokulu Koleksiyonu [200]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.