• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decoding the night: A machine learning approach to predict the severity of obstructive sleep apnea through clinical parameters

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Özçelik, Ali Erdem
Bendeş, Emre
Özçelik, Neslihan

Metadata

Show full item record

Citation

Özçelik, A. E., Bendes, E., & Özçelik, N. (2024). Decoding the Night: A Machine Learning Approach to Predict the Severity of Obstructive Sleep Apnea through Clinical Parameters. In ERS Congress 2024 abstracts (p. PA4478). European Respiratory Society, 64, 68. https://doi.org/10.1183/13993003.congress-2024.pa4478

Abstract

....

Source

European Respiratory Journal

Volume

64

URI

https://doi.org/10.1183/13993003.congress-2024.pa4478
https://hdl.handle.net/11436/9936

Collections

  • Peyzaj Mimarlığı Bölümü Koleksiyonu [81]
  • TF, Dahili Tıp Bilimleri Bölümü Koleksiyonu [1569]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.