• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

In silico identification of LSD1 inhibition-responsive targets in small cell lung cancer

View/Open

Full Text / Tam Metin (5.616Mb)

Access

info:eu-repo/semantics/openAccess

Date

2025

Author

Nalkıran, İhsan
Nalkıran, Hatice Sevim
Özçelik, Neslihan
Kıvrak, Mehmet

Metadata

Show full item record

Citation

Nalkiran, I., Sevim Nalkiran, H., Ozcelik, N., & Kivrak, M. (2025). In Silico Identification of LSD1 Inhibition-Responsive Targets in Small Cell Lung Cancer. Bioengineering, 12(5), 504. https://doi.org/10.3390/bioengineering12050504

Abstract

Small cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy characterized by rapid progression, high metastatic potential, and limited therapeutic options. Lysine-specific demethylase 1 (LSD1) has been identified as a promising epigenetic target in SCLC. RG6016 (ORY-1001) is a selective LSD1 inhibitor currently under clinical investigation for its antitumor activity. In this study, publicly available RNA-Seq datasets from SCLC patient-derived xenograft (PDX) models treated with RG6016 were reanalyzed using bioinformatic approaches. Differential gene expression analysis was conducted to identify genes responsive to LSD1 inhibition. Candidate genes showing significant downregulation were further evaluated by molecular docking to assess their potential interaction with RG6016. The analysis identified a set of differentially expressed genes following RG6016 treatment, including notable downregulation of MYC, UCHL1, and TSPAN8. In silico molecular docking revealed favorable docking poses between RG6016 and the proteins encoded by these genes, suggesting potential direct or indirect targeting. These findings support a broader mechanism of action for RG6016 beyond its known interaction with LSD1. This study demonstrates that RG6016 may exert its antitumor effects through the modulation of additional molecular targets such as MYC, UCHL1, and TSPAN8 in SCLC. The combined bioinformatic and molecular docking analyses provide new insights into the potential multi-target profile of RG6016 and indicate the need for further experimental validation.

Source

Bioengineering

Volume

12

Issue

5

URI

https://doi.org/10.3390/bioengineering12050504
https://hdl.handle.net/11436/10398

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [5990]
  • TF, Dahili Tıp Bilimleri Bölümü Koleksiyonu [1569]
  • TF, Temel Tıp Bilimleri Bölümü Koleksiyonu [698]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.