• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A techno-economic analysis of power generation in wind power plants through deep learning: a case study of Türkiye

View/Open

Full Text / Tam Metin (8.185Mb)

Access

info:eu-repo/semantics/openAccess

Date

2025

Author

Demirkol, Ziya
Dayı, Faruk
Erdoğdu, Aylin
Yanık, Ahmet
Benek, Ayhan

Metadata

Show full item record

Citation

Demirkol, Z., Dayi, F., Erdoğdu, A., Yanik, A., & Benek, A. (2025). A Techno-Economic Analysis of Power Generation in Wind Power Plants Through Deep Learning: A Case Study of Türkiye. Energies, 18(10), 2632. https://doi.org/10.3390/en18102632

Abstract

In recent years, the utilization of renewable energy sources has significantly increased due to their environmentally friendly nature and sustainability. Among these sources, wind energy plays a critical role, and accurately forecasting wind power with minimal error is essential for optimizing the efficiency and profitability of wind power plants. This study analyzes hourly wind speed data from 23 meteorological stations located in Türkiye’s Western Black Sea Region for the years 2020–2024, using the Weibull distribution to estimate annual energy production. Additionally, the same data were forecasted using the Long Short-Term Memory (LSTM) model. The predicted data were also assessed through Weibull distribution analysis to evaluate the energy potential of each station. A comparative analysis was then conducted between the Weibull distribution results of the measured and forecast datasets. Based on the annual energy production estimates derived from both datasets, the revenues, costs, and profits of 10 MW wind farms at each location were examined. The findings indicate that the highest revenues and unit electricity profits were observed at the Zonguldak South, Sinop İnceburun, and Bartın South stations. According to the LSTM-based forecasts for 2025, investment in wind energy projects is considered feasible at the Sinop İnceburun, Bartın South, Zonguldak South, İnebolu, Cide North, Gebze Köşkburnu, and Amasra stations.

Source

Energies

Volume

18

Issue

10

URI

https://doi.org/10.3390/en18102632
https://hdl.handle.net/11436/10402

Collections

  • İşletme Bölümü Koleksiyonu [127]
  • Scopus İndeksli Yayınlar Koleksiyonu [5990]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.