• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A review of machine learning approaches for the discovery of thermoelectric materials

View/Open

Full Text / Tam Metin (35.03Mb)

Access

info:eu-repo/semantics/openAccess

Date

2025

Author

Yelgel, Övgü Ceyda
Yelgel, Celal

Metadata

Show full item record

Citation

Yelgel, Ö. C., & Yelgel, C. (2025). A review of machine learning approaches for the discovery of thermoelectric materials. Advances in Physics: X, 10(1). https://doi.org/10.1080/23746149.2025.2536269

Abstract

Thermoelectric (TE) materials have garnered significant interest due to their capacity to convert heat directly into electrical energy and vice versa, offering a sustainable route for energy harvesting and waste heat recovery. Nevertheless, many of the high-performance TE materials reported to date rely on elements that are scarce, costly, or environmentally hazardous, thereby limiting their large-scale deployment. To overcome these challenges, the development of efficient, earth-abundant, and environmentally benign alternatives is essential. Although first-principles methods provide valuable insights into the transport behavior of potential TE materials, their high computational cost restricts their utility in large-scale material screening. Recent progress in computational infrastructure, along with the advent of data-centric approaches such as machine learning (ML), has transformed the landscape of thermoelectric research. ML algorithms, trained on comprehensive datasets including experimental measurements, crystallographic data, and density functional theory (DFT) results can predict key TE metrics, such as the figure of merit (ZT), with remarkable speed and accuracy. This review explores the integration of ML into TE materials discovery, emphasizing its role in property prediction, descriptor engineering, and structural optimization. A systematic examination of ML-driven strategies promises to accelerate the discovery process and improve the efficiency of next-generation thermoelectric systems.

Source

Advances in Physics: X

Volume

10

Issue

1

URI

https://doi.org/10.1080/23746149.2025.2536269
https://hdl.handle.net/11436/10827

Collections

  • Enerji Sistemleri Mühendisliği Bölümü Koleksiyonu [118]
  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [206]
  • Scopus İndeksli Yayınlar Koleksiyonu [6165]
  • WoS İndeksli Yayınlar Koleksiyonu [5350]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.