• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Determination of bioremediation properties of soil-borne Bacillus sp. 5O5Y11 and its effect on the development of Zea mays in the presence of copper

Thumbnail

View/Open

Full Text / Tam Metin (2.019Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Esertaş, Ülkü Zeynep Üreyen
Uzunalioğlu, Emel
Güzer, Şule
Bozdeveci, Arif
Karaoğlu, Şengül Alpay

Metadata

Show full item record

Citation

Esertaş, Ü.Z.ü., Uzunalioğlu, E., Güzel, Ş., Bozdeveci, A. & Karaoğlu, Ş.A. (2020). Determination of bioremediation properties of soil-borne Bacillus sp. 5O5Y11 and its effect on the development of Zea mays in the presence of copper. Archives of Microbiology, 202(7), 1817-1829. https://doi.org/10.1007/s00203-020-01900-4

Abstract

Today, industrial activities lead to the accumulation of heavy metals in the soil, water, and air due to mine deposits and operations, fertilizers, and drugs used in agriculture, and urban wastes. Using microorganism bioremediation of metals is an important technique in solving these problems. Herein, a rhizoid bacterium isolated from orchids that grow in Ovit plateau was defined as Bacillus sp. 5O5Y11 by conventional and molecular methods and the bioremediation properties of strain were investigated. It was capable of growth at high salt (10-15%) concentration, wide temperature (10-45 degrees C) and pH range (pH 4.5-8.0), and was observed to have strong lecithinase, gelatinase activity, and nitrate reduction. When the plant growth-promoting properties of this strain were examined, strong siderophore and ammonium production were observed in in vitro conditions. Bacillus sp. 5O5Y11 was found to have high tolerance to a group of heavy metals [iron (Fe), copper (Cu), lead (Pb), silver (Ag), zinc (Zn)]. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) values of copper metal on Bacillus sp. 5O5Y11 were determined as 12.5 mM and 50 mM, respectively. the effectiveness of this bacterium on the germination and growth of maize plant in the presence and absence of copper were investigated. These results suggest that Bacillus sp. 5O5Y11 is a microorganism, which has potential in metal bioremediation and plant growth promotion.

Source

Archives of Microbiology

Volume

202

Issue

7

URI

https://doi.org/10.1007/s00203-020-01900-4
https://hdl.handle.net/11436/1128

Collections

  • FEF, Biyoloji Bölümü Koleksiyonu [594]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [6032]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.