• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes

Thumbnail

View/Open

Full Text / Tam Metin (3.493Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Xue, Gaili
Yılmaz, Erol
Song, Weidong
Cao, Shuai

Metadata

Show full item record

Citation

Xue, G.L., Yılmaz, E., Song, W.D. & Cao, S. (2020). Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes. Construction and Building Materials, 241, 118113. https://doi.org/10.1016/j.conbuildmat.2020.118113

Abstract

The strength properties of cemented tailings backfill (CTB: an engineered mix of processing tailings, hydraulic binder and mixing water) is strongly affected by its structural integrity. However, our understanding of the structural integrity of fiber reinforced CTB samples as well as its evolution with time is limited. Thus, a comprehensive laboratory investigation is conducted to study the effect of fiber length on strength properties of CTB prepared with different specimen sizes. the unconfined compressive strength (UCS) tests are conducted on CTB samples prepared with four different lengths (0, 6, 12 and 18 mm) and sizes (cubic mold sizes: 40, 70.7 and 100 mm, accompanied with cylindrical mold sizes: 50 x 100 mm) of polypropylene fiber to study their strengths. Experimental results have shown that the peak and end strains of cubic CTB samples are larger than those of cylindrical CTB ones, and UCS of C-40 CTB is higher than that of the cylinder U50. At this time, the size effect and geometry are the main reasons for the differences observed in the strength properties of the above two backfilling bodies. the UCS of CTB samples decreases with increasing the volume ratio when the fiber length varies from 0 mm to 6 mm. When the fiber length varies from 12 mm to 18 mm, the size effect of fiber-reinforced CTB samples is not obvious, and the fiber length becomes the key to influence the coupling curve of two factors. in addition, the longer the fiber length does not necessarily lead to the higher UCS of CTB samples, but the integrity of the sample under the same external load is better. the findings of this study will help to better evaluate and forecast the UCS behavior of CTB samples under various fiber conditions. (C) 2020 Elsevier Ltd. All rights reserved.

Source

Construction and Building Materials

Volume

241

URI

https://doi.org/10.1016/j.conbuildmat.2020.118113
https://hdl.handle.net/11436/1160

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [260]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.