• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of parameters which affect beach nourishment performance using MARS, TLBO, and conventional regression techniques

Thumbnail

View/Open

Full Text / Tam Metin (1.492Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Karasu, Servet
Kankal, Murat
Naçar, Sinan
Uzlu, Ergün
Yüksek, Ömer

Metadata

Show full item record

Citation

Karasu, S., Kankal, M., Nacar, S., Uzlu, E. & Yüksek, Ö. (2020). Prediction of Parameters which Affect Beach Nourishment Performance Using MARS, TLBO, and Conventional Regression Techniques. Thalassas, 36(1), 245-260. https://doi.org/10.1007/s41208-019-00173-z

Abstract

Artificial beach nourishment is one of the most important environmentally friendly coastal protection methods since it protects the aesthetic and recreational values of the beach and increases its protective properties. Therefore, the main aim of the current study is to assess the accuracy of multivariate adaptive regression splines (MARS) in predicting the parameters, namely sediment transport coefficients (K) and the diffusion rate (omega), which affect beach nourishment performance. the performance of the MARS was determined by comparison of the models using exponential, linear, and power regression equations trained by conventional regression analyses (CRA) and the teaching-learning based optimization (TLBO) algorithm. in all models, two different input data obtained from the experimental study were used, one dimensional and one non-dimensional. the results presented that the MARS models gave lower error values than the CRA and TLBO models according to the root mean square error, mean absolute error, and scattering index criteria. When the models were evaluated, it was revealed that dimensional and non-dimensional models gave approximate results. We proved that the dimensional and non-dimensional MARS models can be used to estimate the (K) and (omega) values.

Source

Thalassas

Volume

36

Issue

1

URI

https://doi.org/10.1007/s41208-019-00173-z
https://hdl.handle.net/11436/1183

Collections

  • Jeoloji Mühendisliği Bölümü Koleksiyonu [78]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.