• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Zirconium-based highly porous metal-organic framework (MOF-545) as an efficient adsorbent for vortex assisted-solid phase extraction of lead from cereal, beverage and water samples

Thumbnail

View/Open

Full Text / Tam Metin (1.090Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2017

Author

Tokalıoğlu, Şerife
Yavuz, Emre
Demir, Selçuk
Patat, Şaban

Metadata

Show full item record

Citation

Tokalıoğlu, S., Yavuz, E., Demir, S. & Patat, Ş. (2017). Zirconium-based highly porous metal-organic framework (MOF-545) as an efficient adsorbent for vortex assisted-solid phase extraction of lead from cereal, beverage and water samples. Food Chemistry, 237, 707-715. https://doi.org/10.1016/j.foodchem.2017.06.005

Abstract

In this study, zirconium-based highly porous metal-organic framework, MOF-545, was synthesized and characterized. the surface area of MOF-545 was found to be 2192 m(2)/g. This adsorbent was used for the first time as an adsorbent for the vortex assisted-solid phase extraction of Pb(II) from cereal, beverage and water samples. Lead in solutions was determined by FAAS. the optimal experimental conditions were as follows: the amount of MOF-545, 10 mg; pH of sample, 7; adsorption and elution time, 15 min; and elution solvent, 2 mL of 1 mol L-1 HCl. Under the optimal conditions of the method, the limit of detection, preconcentration factor and precision as RSD% were found to be 1.78 mu g L-1, 125 and 2.6%, respectively. the adsorption capacity of the adsorbent for lead was found to be 73 mg g(-1). the method was successfully verified by analyzing two certified reference materials (BCR-482 Lichen and SPS-WW1 Batch 114) and spiked chickpea, bean, wheat, lentil, cherry juice, mineral water, well water and wastewater samples. (C) 2017 Elsevier Ltd. All rights reserved.

Source

Food Chemistry

Volume

237

URI

https://doi.org/10.1016/j.foodchem.2017.06.005
https://hdl.handle.net/11436/1997

Collections

  • FEF, Kimya Bölümü Koleksiyonu [474]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.