• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A flexible PV-powered battery-charging scheme for electric vehicles

Thumbnail

View/Open

Full Text / Tam Metin (1.423Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2017

Author

Sharaf, Adel M.
Şahin, Mustafa Ergin

Metadata

Show full item record

Citation

Sharaf, A.M. & Şahin, M.E. (2017). A Flexible PV-Powered Battery-Charging Scheme for Electric Vehicles. Iete Technical Review, 34(2), 133-143. https://doi.org/10.1080/02564602.2016.1155420

Abstract

This paper presents a new design for a low-impact, fully controlled, and flexible self-adjusting DC side pulse-width modulation (PWM)-hybrid modulated filter compensation (HMFC) scheme for multi photovoltaic-arrays utilized for vehicle-to-grid battery-charging electric vehicle schemes. the flexible HMFC scheme developed by the first author as a member of dynamic hybrid capacitor compensation and filtering scheme is robust and effective as it ensures maximum energy utilization and low inrush current transients. in addition, it provides transient voltage damping for a stabilized common DC interface bus to the battery charger. the new flexible controller uses a regulated multi-loop error-driven, error-scaled, and de-coupled hybrid mode charging controller for the PWM switching scheme along with two MOSFET/IGBT (Metal Oxide Semiconductor Field Effect Transistor/Insulated Gate Bipolar Transistor) complementary switches based on ratings and are cascaded for proper voltage and current photovoltaic (PV) arrays utilized. the dynamic error-driven controller ensures reduction in inrush current and transient voltage conditions as well as compensation for cloudy and shadowy conditions by equalizing the maximum power utilization of the two PV arrays. This will ensure efficient PV solar-system energy utilization as well as fully de-coupled source-load operation for the new proposed multi modal Li-ion battery-charging controller. the multi-regulator error-driven proportional integrated derivative controllers with newly added acceleration and fast response auxiliary loops ensure efficient fast charging as well as common DC-bus stabilization under load excursions, temporary faults, and battery hybrid voltage-current-power (V-I-P) charging modes. the hybrid switched/modulated capacitive-filter compensator ensures limited current excursions for transient DC voltage conditions.

Source

Iete Technical Review

Volume

34

Issue

2

URI

https://doi.org/10.1080/02564602.2016.1155420
https://hdl.handle.net/11436/2170

Collections

  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [197]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.