• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings

Thumbnail

View/Open

Full Text / Tam Metin (873.2Kb)

Access

info:eu-repo/semantics/closedAccess

Date

2016

Author

Güler, Neslihan Saruhan
Pehlivan, Necla
Karaoğlu, Şengül Alpay
Güzel, Şule
Bozdeveci, Arif

Metadata

Show full item record

Citation

Guler, N.S., Pehlivan, N., Karaoglu, S.A., Guzel, S. & Bozdeveci, A. (2016). Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiologiae Plantarum, 38(6), 132. https://doi.org/10.1007/s11738-016-2153-3

Abstract

Maize is an agro-economically important crop and its global scale cultivation dates back to ancient times. It is vital to find organic solutions for the agricultural sustainability of maize. Trichoderma spp. is a cheap bio-control candidate having favorable effects on plant growth and enhances resistance to abiotic stresses. Herein, the effect of the endophytic fungus Trichoderma atroviride, our local isolate named ID20G (TaID20G), was evaluated in maize (Zea mays L.) seedlings under drought stress. the fungal strain was characterized based on the internal transcribed spacer (ITS) sequence of 5.8S rDNA. Relative water content, phenotypic characters of roots, antioxidant enzyme activity, hydrogen peroxide content, lipid peroxidation and chlorophyll fluorescence (Fv/Fm ratio) were recorded. Root colonization of TaID20G increased fresh and dry weight of maize roots under drought stress. Chlorophyll and carotenoid contents of seedlings were reduced by drought stress and membrane damage was high in uninoculated plants. Root colonization of TaID20G almost totally prevented increase in lipid peroxidation and reversed the changes caused by drought in pigment contents and photosystem efficiency. Antioxidant enzyme activity was induced and hydrogen peroxide (H2O2) content was less in response to drought stress in inoculated plants. Taken together, these data indicate that TaID20G inoculation could diminish the injurious effects of drought and might have a function in arranging resilience against stress by inducing antioxidant machinery. Low cost and effortless nature of Trichoderma-based formulas might be developed as crop protectors in drought-affected lands around the world, leading to an eco-friendly insight into the plant stress tolerance.

Source

Acta Physiologiae Plantarum

Volume

38

Issue

6

URI

https://doi.org/10.1007/s11738-016-2153-3
https://hdl.handle.net/11436/2501

Collections

  • FEF, Biyoloji Bölümü Koleksiyonu [588]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.