• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy analysis of hydrogen production from a hybrid wind turbine-electrolyzer system

Access

info:eu-repo/semantics/closedAccess

Date

2014

Author

Akyüz, Ersin
Oktay, Zuhal
Dinçer, İbrahim

Metadata

Show full item record

Citation

Akyuz, E., Oktay, Z., Dincer, I. (2014). Energy Analysis of Hydrogen Production from a Hybrid Wind Turbine-Electrolyzer System. In: Dincer, I., Midilli, A., Kucuk, H. (eds) Progress in Exergy, Energy, and the Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-04681-5_33

Abstract

In this study, the energy performance of hybrid wind-hydrogen system is investigated. In addition to energy performance, a cost analysis of hydrogen production is also carried out for stand-alone system for different PEM electrolyzer capacities. Monthly efficiency variations for wind turbine operation for the total system are calculated and maximum efficiency values obtained as 22 % and 11.9 %, respectively. Energy efficiency of the PEM electrolyzer is determined for different temperature and electric current values. The results show that increasing the working temperature from 35 °C to 75 °C increases the energy efficiency of PEM electrolyzer from 62 % to 70 % at 30 A current. Hydrogen cost is calculated by economic analysis of wind-electrolysis-hydrogen production systems using the present-value method. The lowest cost at 6 m/s wind speed is calculated as 23.6 US$/kg. The size of electrolysis unit gains importance in regions with high annual average wind speed. In this regard, the optimum size is determined as 0.7 kW. The lowest cost at 6 m/s wind speed is calculated as 23.6 US$/kg. Furthermore, economics of wind-hydrogen system not only depends on the cost of wind turbine and electrolyzer but also on the configuration and resources. © Springer International Publishing Switzerland 2014.

Source

Progress in Exergy, Energy, and the Environment

URI

https://doi.org/10.1007/978-3-319-04681-5_33
https://hdl.handle.net/11436/4062

Collections

  • Enerji Sistemleri Mühendisliği Bölümü Koleksiyonu [117]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.