• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A numerical analysis of convection heat transfer and friction factor for oscillating corrugated channel flows

Thumbnail

View/Open

Full Text / Tam Metin (2.597Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2019

Author

Aslan, Erman
Özşaban, Mert
Özçelik, Güven
Güven, Hasan Rıza

Metadata

Show full item record

Citation

Aslan, E., Ozsaban, M., Ozcelik, G. & Guven, H.R. (2019). A Numerical Analysis of Convection Heat Transfer and Friction Factor for Oscillating Corrugated Channel Flows. Heat Transfer Engineering, 42(3-4), 181-190. https://doi.org/10.1080/01457632.2019.1699287

Abstract

The aim of this article is to understand numerically the flow and heat transfer characteristics under oscillating flow conditions for periodically corrugated wavy channel. For the same channel, under steady-state flow conditions, experimental and numerical studies were done under steady-state flow conditions by our two previous studies. Three turbulence models are used, namely the k–?, the Shear Stress Transport (SST), and the transition SST. According to the previous study, the best agreement with experiments was obtained using the SST turbulence model. Therefore, the SST turbulence model is applied in this study on the oscillating flow. The finite volume method is used as the numerical method. Investigations are performed for air flowing through corrugated channel which has sharp wavy peaks with an inclination angle of 30° and 5 mm minimum channel height. Reynolds number is varied within the range 6294–7380, while keeping the Prandtl number constant at 0.70. Four different sinusoidal oscillating flow conditions are used. Variations of the Nusselt number, friction factor, and thermo-hydraulic performance factor with the Reynolds number are studied. © 2019, © 2019 Taylor & Francis Group, LLC.

Source

Heat Transfer Engineering

URI

https://doi.org/10.1080/01457632.2019.1699287
https://hdl.handle.net/11436/4462

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [337]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.