• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Strength and microstructure evolution in cemented mine backfill with low and high pH pyritic tailings: Effect of mineral admixtures

Thumbnail

View/Open

Full Text / Tam Metin (6.899Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2022

Author

Sarı, Muhammet
Yılmaz, Erol
Kasap, Tuğrul
Güner, Nihat Utku

Metadata

Show full item record

Citation

Sari, M., Yilmaz, E., Kasap, T. & Guner, N.U. (2022). Strength and microstructure evolution in cemented mine backfill with low and high pH pyritic tailings: Effect of mineral admixtures. Construction and Building Materials, 328, 127109. https://doi.org/10.1016/j.conbuildmat.2022.127109

Abstract

To properly dispose mining-induced tailings, diverse techniques including cemented paste fill (CPB) have been already employed. Indeed, tailings are manufactured by using different admixtures which are poisonous to the environment and need to be closely explored by considering its effects. This study dealt with the quality of CPB containing low pH (4.9) and high pH (10.8) pyritic tailings. Besides, employing ground blast furnace slag (GBFS) and fly ash (FA) in diverse rates instead of ordinary Portland cement (OPC) and their effects on fill performance were explored. Strength and microstructure of CPB made with constant solid content (72 wt%) and different OPC/GBFS-FA ratios (e. g., 90/10, 70/30 and 50/50) were carried out by several laboratory tests. Results showed that the lowest UCS performance was obtained from CPB having 50%FA and acidic tailings. It was also observed that GBFS-based backfills gave better strength than FA-based ones, irrespective of tailings, owing to the former's high pozzolanic activity and grain shape. Regardless of additives, the highest strengths were gained from basic tailings-based backfills. pH of pyritic tailings affected fill's performance due to its aggressive effects on cement hydration. To sum up, this study has provided relevant information and technical evidence that will subsidize the engineering design of a low-cost, zero-waste, and viable mine fill system.

Source

Construction and Building Materials

Volume

328

URI

https://doi.org/10.1016/j.conbuildmat.2022.127109
https://hdl.handle.net/11436/6880

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [261]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.